
(i) 
 

 



(ii) 
 

Software Engineering 
 
 
 
 
 
 

Author 

Prof. Salman Abdul Moiz 
Professor  

School of Computer & Information Sciences 

University of Hyderabad 

 
 

Reviewer 

Prof. Rajib Mall 
Professor  

Department of Computer Science & Engineering 

IIT, Kharagpur. 

 
 
 

 

All India Council for Technical Education 
Nelson Mandela Marg, Vasant Kunj, 

New Delhi, 110070 

 
 



(iii) 
 

BOOK AUTHOR DETAIL 
 

Prof. Salman Abdul Moiz, Professor, School of Computer & Information Sciences, University of Hyderabad, 
Telangana (India) 
Email ID: salman@uohyd.ac.in  

BOOK REVIEWER DETAIL 
 

Prof. Rajib Mall, Professor, Department of Computer Science & Engineering, IIT, Kharagpur. Best Bengal (India) 
Email ID: rajib@cse.iitkgp.ac.in 

 

BOOK COORDINATOR (S) – English Version 
 

1. Dr. Ramesh Unnikrishnan, Advisor-II, Training and Learning Bureau, All India Council for Technical 
Education (AICTE), New Delhi, India  

 Email ID: advtlb@aicte-india.org 
 Phone Number: 011-29581215 

2. Dr. Sunil Luthra, Director, Training and Learning Bureau, All India Council for Technical Education (AICTE), 
New Delhi, India  

 Email ID: directortlb@aicte-india.org 
 Phone Number: 011-29581210 

3. Sh. M. Sundaresan, Deputy Director, Training and Learning Bureau, All India Council for Technical Education 
(AICTE), New Delhi, India  

 Email ID: ddtlb@aicte-india.org 
 Phone Number: 011-29581310 

February, 2024 

© All India Council for Technical Education (AICTE) 

ISBN :  978-93-6027-556-3 

All rights reserved. No part of this work may be reproduced in any form, by mimeograph or any other 
means, without permission in writing from the All India Council for Technical Education (AICTE). 

Further information about All India Council for Technical Education (AICTE) courses may be obtained from the 
Council Office at Nelson Mandela Marg, Vasant Kunj, New Delhi-110070. 
Printed and published by All India Council for Technical Education (AICTE), New Delhi. 

 
Attribution-Non Commercial-Share Alike 4.0 International (CC BY-NC-SA 4.0)

Disclaimer: The website links provided by the author in this book are placed for informational, educational & 
reference purpose only. The Publisher do not endorse these website links or the views of the speaker / content of 
the said weblinks. In case of any dispute, all legal matters to be settled under Delhi Jurisdiction, only. 

 

   

mailto:salman@uohyd.ac.in
mailto:rajib@cse.iitkgp.ac.in
mailto:advtlb@aicte-india.org
mailto:directortlb@aicte-india.org
mailto:ddtlb@aicte-india.org


(iv) 
 

 

  



(v) 
 

ACKNOWLEDGEMENT  

The author is grateful to the authorities of AICTE, particularly Prof. T. G Sitharam, 
Chairman; Dr. Abhay Jere, Vice-Chairman; Prof. Rajive Kumar, Member-Secretary, and 
Dr. Ramesh Unnikrishnan, Advisor-II for their support to publish the book on Software 
Engineering. I would also like to thank Prof. Anil D. Sahasrabudhe, Former Chairman; 
Prof. M. P. Poonia, Former Vice-Chairman; and Dr. Amit Kumar Srivastava, Former 
Director of the Faculty Development Cell, for the initial planning of the book. 

I sincerely acknowledge the valuable contributions of book reviewer, Prof. Rajib Mall, 
Professor, Department of Computer Science & Engineering, IIT Kharagpur. His timely 
suggestions helped make the book students friendly and provide a better shape in an artistic 
manner. 

I want to thank Dean, School of Computer & Information Sciences, University of 
Hyderabad, and my colleagues for their support from time to time. I thank the Vice 
Chancellor of University of Hyderabad for allowing me to take up the assignment.   

This book is an outcome of various suggestions of AICTE members, experts, and authors 
who shared their opinion and thought to develop the engineering education in our country 
further. Acknowledgments are due to the contributors and different workers in this field 
whose published books, review articles, papers, photographs, footnotes, references, and 
other valuable information enriched us when writing the book.  

 
 

Prof. Salman Abdul Moiz 
 

  



(vi) 
 

PREFACE 

The book "Software Engineering" results from the rich experience teaching basic Software 
Engineering and allied courses. The initiation of writing this book is to present basic 
concepts and techniques of software engineering that enable students to get an insight into 
the subject. The book's contents help students develop a software system by following a 
systematic approach. The topics recommended by AICTE are included in an organized and 
orderly manner throughout the book. Efforts have been made to explain the fundamental 
concepts of the subject in the simplest possible way. 

      While preparing the manuscript, I have considered the various standard textbooks and 
the sections like multiple choice questions, short and long questions, etc. While preparing 
the different sections, emphasis has also been laid on the design and development 
principles of software systems. The book covers several case studies and metrics that have 
been presented logically and systematically. This will help students in developing software 
systems systematically. 

      Apart from illustrations and examples as required, the book is enriched with numerous 
solved examples and problems for proper understanding of the related topics. The book 
consists of five units. The first unit, "Software Development Process," covers the basic 
concepts of software development and process models. Agile process models, which are 
required for rapid application development, are presented with a case study. The second 
unit, "Requirements Engineering," includes the requirements engineering process and the 
various paradigms of analysis, which is explained through a case study. The Third unit, 
"Software Design", presents design concepts, software architectures, their applicability, 
and different software design paradigms with the help of a case study. The unit on 
"Software Testing" presents concepts, techniques, and approaches to testing a software 
system. The final unit on "Project Management" describes the tools and techniques for 
effective software planning and project management. It is essential to note in every chapter, 
relevant practicals are included. In addition, the "Know More" section presents some 
additional information on the given topic.  

           I sincerely hope that the book will inspire the students to learn and discuss the ideas 
behind basic software engineering principles and will indeed contribute to developing a 
solid foundation for the subject. I am thankful for all the beneficial comments and 



(vii) 
 

suggestions that will contribute to the improvement of the future editions of the book. It 
gives me immense pleasure to place this book in the hands of the teachers and students. 
Working on different aspects covered in the book was a great pleasure. 

 

Prof. Salman Abdul Moiz 
 

  



(viii) 
 

OUTCOME BASED EDUCATION  

For the implementation of an outcome based education the first requirement is to develop 
an outcome based curriculum and incorporate an outcome based assessment in the 
education system. By going through outcome based assessments, evaluators will be able to 
evaluate whether the students have achieved the outlined standard, specific and measurable 
outcomes. With the proper incorporation of outcome based education there will be a 
definite commitment to achieve a minimum standard for all learners without giving up at 
any level. At the end of the programme running with the aid of outcome based education, 
a student will be able to arrive at the following outcomes:  

Programme Outcomes (POs) are statements that describe what students are expected to 
know and be able to do upon graduating from the program. These relate to the skills, 
knowledge, analytical ability attitude and behaviour that students acquire through the 
program. The POs essentially indicate what the students can do from subject-wise 
knowledge acquired by them during the program. As such, POs define the professional 
profile of an engineering diploma graduate. 

National Board of Accreditation (NBA) has defined the following seven POs for an 
Engineering diploma graduate: 

PO1. Basic and Discipline specific knowledge: Apply knowledge of basic mathematics, 
science and engineering fundamentals and engineering specialization to solve the 
engineering problems. 

PO2. Problem analysis: Identify and analyses well-defined engineering problems using 
codified standard methods. 

PO3. Design/ development of solutions: Design solutions for well-defined technical 
problems and assist with the design of systems components or processes to meet 
specified needs. 

PO4. Engineering Tools, Experimentation and Testing: Apply modern engineering 
tools and appropriate technique to conduct standard tests and measurements. 

PO5. Engineering practices for society, sustainability and environment: Apply 
appropriate technology in context of society, sustainability, environment and ethical 
practices. 



(ix) 
 

PO6. Project Management: Use engineering management principles individually, as a 
team member or a leader to manage projects and effectively communicate about 
well-defined engineering activities. 

PO7. Life-long learning: Ability to analyse individual needs and engage in updating in 
the context of technological changes. 

 

  



(x) 
 

COURSE OUTCOMES  

By the end of the course the students are expected to learn: 
CO-1:  Study software engineering preliminaries and software development process 

models 

CO-2:  Apply requirements engineering to software systems 

CO-3:  Describe software architectures and styles 

CO-4:  Describe UI design and effective coding techniques 

CO-5:  Study testing techniques and project management concepts. 

Mapping of Course Outcomes with Programme Outcomes to be done according to 
the matrix given below: 

Course Outcomes 

Expected Mapping with Programme Outcomes 
(1- Weak Correlation; 2- Medium correlation; 3- Strong Correlation) 

PO-1 PO-2 PO-3 PO-4 PO-5 PO-6 PO-7 

CO-1 3 2 1 1 3 1 3 

CO-2 3 3 3 1 2 2 2 

CO-3 3 2 3 2 3 2 3 

CO-4 3 3 2 3 1 2 3 

CO-5 3 2 2 2 3 3 3 

 

 

 

  



(xi) 
 

GUIDELINES FOR TEACHERS 

To implement Outcome Based Education (OBE) knowledge level and skill set of the 
students should be enhanced. Teachers should take a major responsibility for the proper 
implementation of OBE. Some of the responsibilities (not limited to) for the teachers in 
OBE system may be as follows: 

 Within reasonable constraint, they should manoeuvre time to the best advantage of 
all students. 

 They should assess the students only upon certain defined criterion without 
considering any other potential ineligibility to discriminate them. 

 They should try to grow the learning abilities of the students to a certain level before 
they leave the institute. 

 They should try to ensure that all the students are equipped with the quality 
knowledge as well as competence after they finish their education. 

 They should always encourage the students to develop their ultimate performance 
capabilities.   

 They should facilitate and encourage group work and team work to consolidate 
newer approach.   

 They should follow Blooms taxonomy in every part of the assessment. 

Bloom’s Taxonomy 
 

Level Teacher should 
Check 

Student should be 
able to 

Possible Mode of 
Assessment 

 Create  Students ability to 
create Design or Create Mini project 

 Evaluate  Students ability to 
justify Argue or Defend Assignment 

 Analyse  Students ability to 
distinguish 

Differentiate or 
Distinguish 

Project/Lab 
Methodology 

 Apply  Students ability to 
use information 

Operate or 
Demonstrate 

Technical Presentation/ 
Demonstration 

 Understand  Students ability to 
explain the ideas Explain or Classify Presentation/Seminar 

Remember Students ability to 
recall (or remember) Define or Recall Quiz 

  



(xii) 
 

GUIDELINES FOR STUDENTS 

Students should take equal responsibility for implementing the OBE. Some of the 
responsibilities (not limited to) for the students in OBE system are as follows: 

 Students should be well aware of each UO before the start of a unit in each and 
every course. 

 Students should be well aware of each CO before the start of the course. 
 Students should be well aware of each PO before the start of the programme. 
 Students should think critically and reasonably with proper reflection and action. 
 Learning of the students should be connected and integrated with practical and real 

life consequences. 
 Students should be well aware of their competency at every level of OBE. 

 
 

  



(xiii) 
 

ABBREVIATIONS  
 
 
 

 

General Terms 

Abbreviations  Full form Abbreviations  Full form 

SE Software Engineering COTS Commercially Off The Shelf 
System 

IEEE Institute of Electrical & 
Electronics Engineers 

CBSD Component Based Software 
Development 

UML  Unified Modelling Language SRS Software Requirements 
Specification 

OOAD Object Oriented Analysis & 
Design 

SSAD Structured System Analysis & 
Design 

CRC Class Responsibility 
Collaboration 

CLI Command Line Interface 

UI User Interface GUI Graphical User Interface 

MVC Model View Controller HTTP  Hyper Text Transfer Protocol 

OOA  Object Oriented Analysis OOD Object Oriented Design 

DFD Data Flow Diagram SDD Software Design Document 

TFD Test First Development CFG Control Flow Graph 

QA Quality Assurance QC  Quality Control 

SQA Software Quality Assurance SPM Software Project Management 

PMI Project Management Institute SCM  Software Configuration 
Management 

LOC Lines of Code FP Function Point 

DSI Delivered Source Code 
Instructions 

KLOC Kilo Lines of Code 

KDSI Kilo Delivered Source Code 
Instructions 

SLOC Source Lines of Code 

UFP Unadjusted Function Point TCF Technical Complexity Factor 

EI External Inputs EO External Outputs 



(xiv) 
 

General Terms 

Abbreviations  Full form Abbreviations  Full form 

I  Inquiries  IF Internal Files 

EF External Files CAF Complexity Adjustment 
Factor 

PM Person-Months COCOMO Constrictive Cost Model 

WBS Work Breakdown Structure MT Minimum Time 

EST Earliest Start Time EFT Earliest Finish Time 

LFT Latest Finish Time ST Slack Time 

LST Latest Start Time ACT Annual Change Traffic 

SCM Software Configuration 
Management 

SCI Software Configuration Item 

CCA Change Control Authority ECO Engineering Change Order 

XP Extreme Programming MR Modification Request 
 

  



(xv) 
 

LIST OF FIGURES  

Unit 1 Software Development Life Cycle 

Fig. 1.1 : A holistic view of a Software 

Fig. 1.2 : Systems Engineering 

Fig. 1.3 : Role, Activity and Artifact 

Fig. 1.4 : Software Process 

Fig. 1.5 : Requirements Engineering Process 

Fig. 1.6 : A generic Design Process 

Fig. 1.7 : Levels of Testing 

Fig. 1.8 : Change Management Process  

Fig. 1.9 : Taxonomy of Software Development Process 

Fig. 1.10: Waterfall Model  

Fig. 1.11: Component Based Development Process  

Fig. 1.12: Prototype Model  

Fig. 1.13: Incremental Development Process  

Fig. 1.14: Pipelining mechanism to manage increments  

Fig. 1.15: Spiral Model  

Fig 1.16 : Unified Process 

Fig 1.17 : Plan-Driven Model 

Fig 1.18:  Agile Model 

Fig 1.19: SCRUM Framework 

3 

5 

7 

10 

11 

12 

13 

14 

15 

16 

18 

20 

21 

21 

22 

24 

25 

26 

29 

  

Unit 2 Requirements Engineering 

Fig. 2.1 : Functional requirements 

Fig. 2.2 : Actor 

Fig. 2.3 : Use Case  

Fig. 2.4 : Association 

Fig. 2.5 : Preliminary use case diagram 

Fig. 2.6 : Refined use case diagram 

Fig. 2.7 : Use case specification template  

43 

46 

46 

46 

46 

47 

47 



(xvi) 
 

Fig. 2.8 : Clas representation 

Fig 2.9  : CRC Card 

Fig 2.10: Use case diagram for banking scenario 

Fig 2.11: Use case specification for deposit amount 

Fig 2.12: Use case specification for withdraw amount 

Fig 2.13: Use case specification for Transfer amount 

Fig 2.14: Notations used in Data Flow Diagram (DFD) 

Fig 2.15: Process description template 

Fig 2.16: Context Level DFD for LIS 

Fig 2.17: First Level DFD for LIS 

Fig 2.18: Second Level DFD for Issue Book 

Fig 2.19: Second Level DFD for Return Book 

Fig 2.20: Process description of few processes of LIS 

48 

49 

49 

50 

51 

52 

53 

55 

55 

56 

56 

57 

57 

 

Unit 3 Software Design 

Fig. 3.1 :   Layered design 

Fig. 3.2 :  Coupling types 

Fig. 3.3 :  Cohesion types 

Fig 3.4  :  Feedback system architecture 

Fig 3.5 :  Model-View-Controller architecture 

Fig 3.6 :  Generic layered architecture 

Fig 3.7 :  Repository architecture 

Fig 3.8:  Client-Server architecture 

Fig 3.9:  Three Tier architecture 

Fig 3.10: Pipe and Filter architecture 

Fig 3.11: Object representation 

Fig 3.12: Sequence diagram 

Fig 3.12: Collaboration diagram 

Fig 3.14: Generic Class diagram 

Fig 3.15: Relationships and their notations 

Fig 3.16: Multiplicity variants 

72 

73 

74 

76 

77 

78 

79 

80 

80 

81 

84 

84 

85 

86 

86 

87 



(xvii) 
 

Fig 3.17: Deposit Amount user interface 

Fig 3.18: Sequence diagram for Deposit Amount 

Fig 3.19: Sequence diagram for Withdraw Amount 

Fig 3.20: Sequence diagram for Tranfer Amount 

Fig 3.21: Class diagram for the Banking System 

Fig 3.22: Notations used in structure chart 

Fig 3.23: DFD of LIS 

Fig 3.24: DFD of LIS specifying afferent, efferent branches 

Fig 3.25: Structure chart of LIS with first level factoring 

Fig 3.26: Structure chart of LIS 

Fig 3.27: DFD representing transaction analysis 

Fig 3.28: DFD for Banking Transactions 

Fig 3.29: Structure chart for Banking Transactions 

88 

89 

90 

90 

91 

92 

93 

93 

94 

95 

96 

96 

97 

 

Unit 4 Testing 

Fig. 4.1 : Test Oracle 

Fig. 4.2 : Testing Process 

Fig. 4.3 : Test design template 

Fig. 4.4 : Equivalence Class Partitioning 

Fig. 4.5 : Decision Table 

Fig. 4.6 : Decision Table for interest rate computation       

Fig. 4.7 : Cause-Effect Graph 

Fig. 4.8 : Oddeven() function 

Fig. 4.9 :  Statement Coverage for two scenarios of Oddeven() function 

Fig. 4.10:  Sample function for statement coverage 

Fig. 4.11:  Statement coverage for two scenarios of sample() function 

Fig. 4.12: Sample function for condition coverage 

Fig. 4.13: Condition coverage of Fig 4.12 

Fig. 4.14: Program with compound condition 

Fig 4.15: Condition coverage of Fig 4.14 

Fig 4.16: Function to display perfect numbers upto n 

109 

111 

112 

114 

115 

116 

117 

118 

119 

119 

120 

121 

121 

121 

122 

123 



(xviii) 
 

Fig 4.17: Control Flow graph of Fig 4.16 

Fig 4.18: Levels of Testing 

Fig 4.19: Modules and Interfaces 

Fig 4.20: Order of interfaces tested using top-down integration of Fig.4.19 

Fig 4.21: Order of interfaces tested using bottom-up integration of Fig.4.19 

Fig 4.22: Module hierarchy 

Fig 4.23: Order of interfaces tested using sandwich integration of Fig.4.19 

 

123 

125 

126 

127 

128 

128 

129 

 

Unit 5 Project Management 

Fig. 5.1 : FP analysis parameters and weighing factors 

Fig. 5.2 : Constant values for various systems to compute effort and time 

Fig. 5.3 : Effort multipliers for different cost drivers 

Fig. 5.4 : Work Breakdown Structure 

Fig. 5.5 : Work Breakdown Structure example 

Fig. 5.6 : Activity network representation of Fig 5.5 

Fig. 5.7 : Critical Path Analysis of Fig. 5.6 

Fig. 5.8 : Gantt chart representation of Fig. 5.5 

Fig. 5.9 : Software Configuration Management Process 

Fig. 5.10 : Sample Product Backlog 

 

145 

148 

149 

151 

151 

152 

153 

153 

157 

159 

 

 

 

 

 

 

 

  

 
 

 



(xix) 
 

CONTENTS  

 
        Foreword 
        Acknowledgement                                                                                                                                                    
        Preface     
        Outcome Based Education  
         Course Outcomes 
        Abbreviations and Symbols                
        Guidelines for Teachers 
        Guidelines for Students     
        List of Figures      

iv 
v 

vi 
viii 

x 
xi 

xii 
xiv 
xv 

 

 
Unit 1: Software Development Life Cycle 
  
         Unit specifics                                                                                                                                                       
 Rationale                                                                                                                                                          
 Pre-requisites 
 Unit outcomes                                                                                                                                                   
1.1  Software Engineering Preliminaries 
 1.1.1 Software        
 1.1.2 Software Engineering              
 1.1.3 Systems Engineering 
         1.1.4 4P’s of Software Development 
1.2  Challenges in Software Development       
1.3  Software Quality Attributes               
1.4  Software Development 
         1.4.1 Software Process                 
         1.4.2 Requirements Analysis and Specification 
         1.4.3 Design and Implementation 
         1.4.4 Testing 
         1.4.5 Evolution and Decommissioning     
         1.4.6 Software Development Process  
1.5  Generic Development Process                 
         1.5.1 Waterfall Model                 
         1.5.2 Component Based Software Development 

    1.6  Iterative Development Process               
         1.6.1 Evolutionary Model  
 

1-36 
 

1 
2 
2 
3 
3 
3 
4 
5 
6 
7 
8 
9 
9 

10 
12 
13 
13 
14 
15 
16 
17 
19 
19 

 



(xx) 
 

          1.6.2 Incremental Development Model 
          1.6.3 Spiral Model 
          1.6.4 Unified Process Model 

   1.7  Agile Development Process                 
1.7.1 Plan Driven Models 
1.7.2 Agile Model             
1.7.3 Agile Principles 
1.7.4 Agile Methodologies 
1.7.5 Banking Scenario 

                    Unit summary              
                    Exercises              
                    Practical                
                    Know more                    
                   References and suggested readings                 

                                                                                                                                                                                  

Unit 2: Requirements Engineering                                                            
  
         Unit specifics                                                                                                                                                          
 Rationale                                                                                                                                                          
 Pre-requisites 
 Unit outcomes                                                                                                                                                   
2.1  Requirements Elicitation 
          2.1.1 Interviews 
         2.1.2 Questionnaire 
         2.1.3  Record view 
        2.1.4 Ethnography     
2.2 Software Requirements               

2.2.1 User and System Requirements                
2.2.2 Functional and Non-functional requirements.         

  2.3 Requirements Analysis and Specification 
2.3.1 Object Oriented Analysis                     
2.3.2 Case Study: Object Oriented Analysis                     
2.3.3 Structured System Analysis                    
2.3.4 Case Study: Structured System Analysis            

2.4 Software Requirements Specification           
2.5  Requirements Validation                       

2.5.1 Requirements Review                     
2.5.2 Prototyping           

                    Unit summary              
                    Exercises    
                    Practical                       

20 
22 
23 
25 
25 
26 
27 
28 
30 
32 
33 
34 
35 
36 

 
 

37-67 
 

37 
38 
38 
39 
39 
40 
40 
41 
41 
41 
42 
43 
44 
45 
49 
53 
55 
58 
60 
60 
61 
62 
63 
65 



(xxi) 
 

                    Know more                    
                   References and suggested readings                 

 
Unit 3: Software Design                                                                                                        
         Unit specifics                                                                                                                                                          
 Rationale                                                                                                                                                          
 Pre-requisites 
 Unit outcomes                                                                                                                                                   
3.1  Design Principles 
         3.1.1 Problem Decomposition and Hierarchy 
         3.1.2 Abstraction 
         3.1.3 Modularity 
3.2 Modular Design 
        3.2.1 Coupling 
        3.2.2 Cohesion         
3.3 Software Architecture             
3.4 Architectural Styles 
          3.4.1 Model-View-Controller Architecture  
          3.4.2 Layered Architecture 
          3.4.3 Repository Architecture 
          3.4.4 Client- Server Architecture 
          3.4.5 Pipe and Filter Architecture 
3.5  User Interface Design  

        3.5.1 User Interface Design Process 
        3.5.2 User Interface Design Principles       

3.6 Object-Oriented Design  
 3.6.1 Interaction Diagram 
3.6.2 Class Diagram             

        3.6.3 Case Study: Object Oriented Design 
3.7   Sturctured-System Design 
        3.7.1 Structure Chart 
        3.7.2 Transform Analysis 
        3.7.3 Transaction Analysis                    
3.8  Coding Principles          

  3.8.1 Coding Standards & Guidelines  
                       Unit summary              
                       Exercises       
                      Practical                    
                      Know more                    
                      References and suggested readings                 

 

     66 
67 

 
68-105 

68 
69 
69 
70 
70 
71 
71 
72 
72 
73 
74 
75 
77 
77 
78 
79 
80 
81 
81 
82 
83 
83 
84 
86 
88 
91 
92 
93 
96 
98 
98 

100 
101 
103 
104 
105 

 
 



(xxii) 
 

Unit 4: Software Testing                                                    
  
         Unit specifics                                                                                                                                                          
 Rationale                                                                                                                                                          
 Pre-requisites 
 Unit outcomes                                                                                                                                                   
4.1  Testing Preliminaries 
          4.1.1 Error, Fault and Failure 
         4.1.2 Test Oracle 
        4.1.3 Verification and Validation 
4.2  Testing Process 
          4.2.1 Requirements Analysis 

       4.2.2 Test Planning 
       4.2.3 Test Design 
       4.2.4 Environment Setup 
       4.2.5 Test Execution 
       4.2.6 Test Closure                  

4.3  Black Box Testing 
      4.3.1 Equivalence Class Partitioning 
      4.3.2 Boundary Value Analysis 
      4.3.3 Decision Table 
      4.3.4 Cause Effect Graph            
4.4  White Box Testing 
       4.4.1 Statement Coverage 
      4.4.2 Condition Coverage 
      4.4.3 Path Coverage 
      4.4.4 Function Coverage       
4.5  Levels of Testing 
      4.5.1 Unit Testing 
      4.5.2 Integration Testing 
      4.5.3 System Testing 
      4.5.4 Acceptance Testing                          
4.6  Quality Assurance            

4.6.1 Elements of Software Quality Assurance               
                 Unit summary               
                 Exercises              
                 Practical               
                 Know more                    
                References and suggested readings                 

 
 
 

106-137 
 

106 
107 
108 
108 
108 
108 
109 
110 
110 
111 
111 
111 
112 
112 
113 
113 
114 
114 
115 
116 
117 
118 
120 
122 
124 
125 
125 
126 
129 
129 
130 
130 
132 
133 
135 
136 
137 

 
 
 



(xxiii) 
 

Unit 5: Project Management                                                                                            
  
         Unit specifics                                                                                                                                            
 Rationale                                                                                                                                                          
 Pre-requisites 
 Unit outcomes                                                                                                                                                   
   5.1 Project Management Concepts               

      5.1.1 The Management Spectrum             
            5.1.2 W5HH principle       

5.2  Project Size Estimation Metrics    
        5.2.1 Lines of Code (LOC) 
        5.2.2 Function point 
5.3 Software Planning    
        5.3.1 Effort Estimation:COCOMO 
        5.3.2 Project Scheduling and Staffing 
5.4  Software Maintenance          
        5.4.1 Types of Software Maintenance 
       5.4.2 Sofware Maintenance Process 
       5.4.3 Maintenance cost estimation 
5.5  Software Configuration Management             

            5.5.1 Software Configuration Management Process               
            5.5.2 Release Management 
                     Unit summary               
                     Exercises              
                     Practical              
                     Know more                    
                      References and suggested readings                 

 

 References for Further Learning 
 

CO and PO Attainment Table 
 

Index  
  

138-166 
 

138 
139 
139 
140 
140 
141 
142 
143 
144 
144 
147 
147 
150 
154 
154 
154 
155 
156 
156 
159 
161 
162 
164 
165 
166 

 
 

167 
 

168 
 

169-173 
 

 
 





Software Engineering | 1 

 

 
 

d 

 

 

 

 

UNIT SPECIFICS  

In this unit, we have discussed the following aspects: 

 Fundamentals of software engineering; 
 Challenges in software development;  
 Software development activities; 
 Generic software development process models;  
 Iterative software development process models;  
 Agile process model; 

The practical applications of the topics are discussed for generating further curiosity and creativity 
as well as improving problem solving capacity.  

      Besides giving multiple choice questions as well as questions of short and long answer types 
marked in two categories following lower and higher order of Bloom’s taxonomy, assignments, a 
list of references and suggested readings are given in the unit so that one can go through them for 
practice. It is important to note that for getting more information on various topics of interest some 
QR codes have been provided in different sections which can be scanned for relevant supportive 
knowledge. 

      After the related practical, based on the content, there is a “Know More” section. This section 
has been carefully designed so that the supplementary information provided in this part becomes 
beneficial for the users of the book. This section mainly highlights the initial activity, examples of 
some interesting facts, analogy, history of the development of the subject focusing the salient 
observations and finding, timelines starting from the development of the concerned topics up to the 
recent time, applications of the subject matter for our day-to-day real life or/and industrial 
applications on variety of aspects, case study related to environmental, sustainability, social and 
ethical issues whichever applicable, and finally inquisitiveness and curiosity topics of the unit. 

 

 

 

1           Software Development 
Process 



2 | Software Development Process 

 

RATIONALE  

The initial era of Computers in the mid- 1960s was essentially known as the programming era 
because computer coding was reaping significant benefits at that time. Computations were done 
faster with the help of programming languages like Fortran etc. With the increase in computing 
power, the demands of the industry also increased. Thereby the complexity of the program 
increased further. It was challenging to manage the complexity of systems. 

In 1963, the time-sharing systems came into existence [McCarthy]. Unlike batch processing 
systems, these systems provided greater interactivity. The transition from batch processing to time-
sharing systems increased the complexity of the programs.  The systems at that time were typically 
prone to two major issues. First, the product delivery was delayed, and the cost increased. Second, 
there were operational issues in dealing with this transition. Major organizations were affected by 
this transition and were either closed or on the verge of a major collapse. 

In 1968, NATO sponsored a conference in which the issues faced by the organizations were openly 
discussed for the first time. The terms “Software Engineering” and “Software Crisis” were coined 
during the conference. It was resolved that the current software development practices are 
inadequate, and new methodologies and mechanisms have to be adopted for the development of a 
software.  

In the last 5 to 6 decades, there have been several changes in technological aspects which also 
changes methods, processes, and techniques for developing software systems. To benchmark these 
processes several standards and assessment methods were developed over a period which requires 
continuous changes. Hence the technological transitions have to be guided by proper processes, 
methods, assessment strategies and standards which form the building blocks of Software 
Engineering.  

In this unit, students get a primary idea about the basic concepts of software engineering. It initially 
presents the technical jargon used in software development. The next part of this unit deals with 
understanding the software process and various software development activities.  

The Generic, Iterative and Agile software development models are explained. The advantages and 
disadvantages of these models are highlighted. This unit also presents the applicability of these 
process models to various domains. 

       

PRE-REQUISITES  

Computer Programming (Diploma Semester-III) 
Scripting Languages  (Diploma Semester-III) 
 
 
 



Software Engineering | 3 

 
 

UNIT OUTCOMES  

List of outcomes of this unit is as follows: 
U1-O1: Describe the basic concepts of software development,  
U1-O2:  Describe the challenges in software development 
U1-O3: Describe Generic and Iterative software development models 
U1-O4:  Assess suitability of software development models for various applications 
 

Unit-1 
Outcomes 

EXPECTED MAPPING WITH COURSE OUTCOMES 
(1- Weak Correlation; 2- Medium correlation; 3- Strong Correlation) 
CO-1 CO-2 CO-3 CO-4 CO-5 

U1-O1 3 1 1 - 3 
U1-O2 3 2 2 1 2 
U1-O3 3 2 2 2 2 
U1-O4 3 3 3 2 2 

 

  

1.1 SOFTWARE ENGINEERING PRELIMINARIES 
 
1.1.1 Software 

Software is a system asset that coordinates to realize a task or a goal. The system assets include 
programs, documentation and mechanisms needed to operate the software system. A holistic view 
of a software is given in  Fig 1.1. The software consists of a set of programs. It also contains a set 
of documents. These documents are primarily for users and developers of the system. A set of 
rules to install and use the software are specified in the operational guidelines.  
 

 

 

 

 

 

 
Fig. 1.1: A Holistic view of a Software 

 

Program Documentation 

Operational 
Guidelines 



4 | Software Development Process 

 

The programs include source code and object code. Program typically consists of instructions to 
execute a particular task. For the successful development of a program, it has to go through 
various steps, and each step has to be properly documented. This documentation will be needed 
to understand the program better and make necessary changes when desired.  
A particular set of guidelines has to be adopted to make the software operational. This is provided 
in the form of manuals. Generally, there are two types of manuals, viz. - Developer and user 
manual. A Developer manual helps programmers and developers understand the systems design 
and implementation. This manual will help the developers maintain the system in the future. The 
user manual specifies the steps to use the system.  
In summary, the software alone will not help the users. In addition, we need procedures to operate 
and a mechanism to assist end users in using the software effectively. For example, if one has to 
install BOSS (Bharat Operating System Solutions), one must know the steps to install and operate 
it. In addition, we need documentation to use the open-source operating system. 
 

    1.1.2 Software Engineering 
 
The term software engineering came into existence to deal with the software crisis. In 1968 it was 
felt that Software development is an engineering discipline where each step in software 
development should be realized by following well-defined principles and practices.  
 
As per IEEE, “Software Engineering is a systematic approach for development, operation, 
maintenance and retirement of a software”. 
 
The above definition includes four dimensions: 
Development:  This process starts with identifying the problem to be solved, understanding, 
designing, implementing, and testing. These activities are expected to follow well-defined 
principles.  
Operation: The developed software system has to follow certain rules for its installation and use. 
It also includes the mechanisms to be followed to deal with reliability and other aspects of the 
system. 
Maintenance: The systems modifications must follow a change request process so that the 
existing functionalities are not affected. 
Retirement: Each real-time entity has a lifetime, and so is for the software. Once an application 
becomes obsolete, it is time to stop using it, but there should be access to historical data. The 
application closure also has to follow a specific, well-defined process. 
 
Software engineering is not only concerned with the software development, but also includes 
other activities such as maintenance, project management etc. Each of these activities has to 
follow a systematic and organized approach. Software development aims to produce quality 
software within time and given budget. This goal can be achieved by following scientific and 
proven methods. 



Software Engineering | 5 

 
 

 

1.1.3 Systems Engineering 
 
Systems engineering gives a holistic view of product development. Software alone is insufficient 
for the realization of goals. Software drives hardware. When the programs are developed and 
executed, they have to be deployed on a particular machine or device. Process engineering is an 
engineering discipline used to design, implement and control systems engineering activities. 
These activities will enable the developers to produce high-quality software. 
 
 
 
 

 
 

 

 

 

 
   

Fig. 1.2: Systems Engineering 

 
Systems engineering includes set of programs written, executed and deployed on a hardware 
device. This includes computer chip design, spacecraft design etc. 
 
Computer sciences is a branch of study that deals with theory and fundamentals. Software 
engineering deals with mechanisms for developing and delivering useful software products.  
As per the traditional practices, software engineering has to be supported by the concept of 
computer science, but due to various factors faced by industry and customer demands, this is not 
the reality. Software engineering sometimes may have to adopt ad-hoc approaches for developing 
software. 

 
 
 
 
 

          Process  

          Engineering 

   

Software Hardware 

      Systems 
Engineering 



6 | Software Development Process 

 

1.1.4 4P’s of Software Development 
 
Traditionally there are 4P’s used in software development domain. They are  

 
 Process 
 People 
 Project 
 Product 

 
A Process refers to a sequence of activities producing an outcome. Software process refers to 
activities that interact to produce a software product.  
Each activity in a process takes certain inputs and produces an outcome. These outcomes are 
often referred to as artifacts. Each process or activity has to satisfy specific criteria before the 
process or activity starts. This activity is known as Pre-condition. Each activity has to satisfy its 
pre-condition for its execution to produce an artifact. In the software process, each of these 
outcomes may be documentation, source code, test result, etc. 
 
For example, each university or institution possesses an admission process. The admission 
process consists of a particular sequence of activities. Though the admission process differs from 
one institution to another, it usually starts with a student applying for a specific course until they 
get a course allotment or get rejected. Each of these activities has to satisfy a pre-condition to 
realize the same. To apply to a particular course, a student has to either pass the qualifying exam 
or might have appeared for the qualifying exam. This acts as a pre-condition.  
 
After applying for a particular course, the student receives an acknowledgment in the form of a 
registration number or a receipt. This is the artifact for the first activity. Similarly, all activities 
produce different artifacts.  
  
Any development or production activity needs People. They are required at all levels, from a 
manager to a helper. A specific set of people must carry out each activity in the software 
development process. People are identified by their roles. Figure 1.3 specifies the relationship 
between people (Specified by role), activity, artifact, and process. Programmers and Testers 
(People) are responsible for Implementation and Testing (Activities) to produce Source code and 
Test reports (Artifacts) 

 



Software Engineering | 7 

 
 

 

Fig. 1.3: Role, activity and artifacts 

It is evident from fig 1.3 that first implementation activity is realized, then the testing activity. 
This sequence of activities forms a process. 
 
The Product is the final outcome of the process. The artifacts or deliverables produced by each 
activity together constitute a product. In software development process, documentation, source 
code, object code, and test reports are the final artifacts needed. They are subsets of the final 
product. 
 
Project covers planning and project management activity which is most important to monitor the 
products development progress. This includes planning, staffing, managing, and directing 
activities toward the project’s development. It is a critical activity as software development is a 
time-bound activity. This also includes the estimation of cost and time for each of the activities 
of the product under development. 

 

1.2 CHALLENGES IN SOFTWARE DEVELOPMENT 
     

In the mid-1960s, there were several issues faced by organizations during the development of 
software. These software crises were discussed at the NATO conference leading to an engineering 
branch in software development called software engineering. However, new challenges emerge 
due to the changing nature of software from time to time. A few of the challenges faced by 
software developers during the last six decades are discussed below: 
 

 Time and cost overrun: As software development is time bound, any delay in delivering the 
software on time also affects its cost. The delay might have resulted because of improper 
understanding of the requirements, unskilled workforce, lack of adequately defined processes, 
organizational issues, etc. 



8 | Software Development Process 

 

 
 Communication issues: These issues are generally observed between the customer, developer, 

or development team members. The developer's improper understanding of the customer's 
requirements may lead to erroneous product development. Similarly, there could be 
coordination problems among members of development teams. This usually happens when the 
development teams are distributed geographically. 

 
 Lack of quality products: Ensuring the quality of the developed product is the goal of software 

engineering. However, product doesn’t conform to users requirements due to improper testing. 
Some software products take an enormous time to ensure software quality, which is not 
acceptable to the customers.  

 
 Lack of clarity by customers: In some scenarios, the customer is not clear about their 

requirements.  In such cases, the end product doesn’t meet the customer’s expectation. 
 

 Heterogeneity: This is one of the critical challenges of software engineering. The current 
systems are required to operate in a distributed way across networks on different types of 
machines and devices.  There is also a need to integrate the new systems with the legacy 
systems using different programming languages to work efficiently.  

 
 Trust: Trust is an important issue faced by all stakeholders. The system available at the remote 

station must be trusted by users to access it from any place and from any device. 
 
To address these challenges, new techniques and methods are needed from time to time. 

 

1.3 SOFTWARE QUALITY ATTRIBUTES 
 

Software engineering aims to produce quality product within time and budget. Oxford dictionary 
defines quality as a “Degree of excellence”. According to Edward Deming, quality is defined as 
“Fitness for the purpose”. Generally, a product that is user-friendly and meets the customers’ 
requirements and desired performance requirements is a quality product. Each software product 
has several associated attributes that define its quality. 

 
 Maintainability: Each software system is prone to changes. Hence software must be built to 

cope with all future changes. This includes correcting the defects that occurred, modifying the 
existing elements of the system, and adding new functionalities to the current system.  
 



Software Engineering | 9 

 
 

 Reliability: A system is reliable if it does not produce costly failures. The ability of the product 
to sustain in the presence of disasters is the reliability of the system. It is the probability that 
the system will work as expected for a specified time interval. 
 

 Usability:  The ability to develop software that is easy to use is the usability of a software. This 
is possible by providing proper user interfaces.  The user interfaces may be designed based on 
the maturity of target users of the system. 

 
 Efficiency: The ability of software to use optimal resources is its efficiency. It includes memory 

utilization, processing time, etc.  
 

 Interoperability: The ability of a system or a module to exchange data or services with other 
module is referred to as interoperability. These modules may work on different operating 
systems, programming languages, and environments. 
 

 Security:  Security ensures that the system or modules are prevented from unauthorized access. 
It also includes avoiding information loss, protecting the privacy of data and ensuring that the 
system is virus free.  

 
 Portability: The ability of the systems to work on other platforms or environments. 

 
 Reusability: Reuse helps in producing quality software that is cost-effective and time efficient. 

The system has to be divided into modules so that these modules are reusable across the 
applications. 
 

These quality characteristics varies from one system to another. The desired quality attributes have 
to be identified before developing the system.  
 

1.4 SOFTWARE DEVELOPMENT 
 

Software development includes sequence of activities required to build a software product. This 
includes designing, developing, testing, and managing a software.  
 

1.4.1 Software Process 
 

Software process refers to the activities used to develop a software system. One may either 
develop the system from scratch or may request modifications to the existing system.   

 



10 | Software Development Process 

 

 

Fig. 1.4: Software Process 
An organization may use many processes which are either executed serially or simultaneously. 
Few of these processes are not concerned with software engineering, but they may impact 
software development. The software process is the mechanism that deals with technical and 
managerial issues of software development. 
An educational institution may implement several processes. This may include Admission, 
Teaching-Learning, Examination and Evaluation, Placement etc. The automation of each of these 
processes has to follow certain software development activities.  
There are several generic processes available. However, organizations tend to follow processes 
suitable to their needs. Irrespective of the software process used, fundamental activities are 
common across all the processes. The basic software development activities are: 
 
 Requirements Analysis and Specification 
 Design and Implementation 
 Testing 
 Evolution and decommissioning 

 

1.4.2 Requirements Analysis and Specification 
 
The goal of this activity is to collect the requirements from the customer, understand the 
requirements without any ambiguity and identify the systems constraints that are needed for the 
operation and deployment of the system. This is an initial and vital phase of development. Any 
gap in understanding the requirements may affect all the subsequent phases, resulting in a product 
not satisfying the customer.   
There are two levels of requirements. Customers or stakeholders need high-level requirements, 
whereas developers require detailed system specifications.  

 Requirements engineering is the process of eliciting requirements, analyzing, specifying, 
documenting, and validating the same. The requirements engineering process is specified in 
figure 1.5. The requirements engineering process starts with assessing the project’s feasibility, 
and goes through four phases. The artifacts produced by the requirements engineering process 
includes Feasibility report and requirements specification document. 



Software Engineering | 11 

 
 

 

 
Fig. 1.5: Requirements Engineering Process 

 
 
In the first phase, a feasibility study is performed, which decides whether to proceed with a 
detailed requirements analysis. Three types of feasibility is assessed: Technical, Economical, and 
Operational Feasibility. Technical feasibility ensures whether the required infrastructure 
(software, hardware) and human resources to develop the system is available or can be hired. 
Economic feasibility deals with ensuring that the proposed system is cost-effective i.e., it assesses 
whether the system can be built with the available budget of the organization. Operational 
feasibility ensures that the system, when developed, will be easy to use by the customers and that 
the stakeholders will accept the created or modified system. Based on the outcome of the 
feasibility report, the actual requirements engineering process begins. It is to be noted that the 
feasibility study phase should be quick and cheap. The artifact of the feasibility study is the 
feasibility report.  
The second phase is the requirements elicitation process, where the requirements are collected 
from the potential users. The requirements can be collected through Interviews, Questionnaires, 
reviewing records, and observations. A high-level prototype is developed to understand the 
system better. To better understand the customer's requirements, models are developed. The 
artifact of this phase is the System models for the needs collected.  
The third phase is the requirement specification. In this phase, the requirements gathered in the 
analysis phase are translated into a document that signifies a set of requirements. There are two 
views of the requirements. The first one is the user requirements which are documented for the 
system's end users. System requirements specify details of the functionality of the system.  
  The fourth stage is of requirements validation. In this phase, it is checked whether the 
requirements documented are complete, correct, and unambiguous. If there is any discrepancy, 
the requirements have to be modified. 

 
 



12 | Software Development Process 

 

1.4.3 Design and Implementation 
The design aims to realize the solution for the problem specified by the requirements specification 
document. This is the first step to realizing solution to the problem domain identified during 
requirements specification process.  
The process of design of a system is depicted in figure 1.6 

 
Fig. 1.6: A generic Design Process 

In the Architectural design phase, the software system’s structure is decided based on the 
requirements specified. The artifact produced is the architecture of the system.  The architecture 
specifies the structure of the system. The high-level design phase identifies the modules or sub-
systems. The specification of each of these modules forms the artifact of this phase. An equivalent 
interface design is needed for each system and sub-systems identified in the previous phase. These 
interfaces realize a service of the module or sub-modules. The component design aims at 
developing sub-systems so that they can be effectively reused across applications. To access these 
components, we need proper interfaces. 
The data structures and algorithms needed to provide the required services are designed in the 
detailed design phase. The artifacts of the design phase include architecture description, module 
specification, interface specification, component specification, data structure, and algorithm 
specification.  
The design model varies from one type of paradigm to another. It may adopt structured methods, 
object-oriented methods, or the agile approach. 
Implementation aims to transform the design to source code and test the individual modules or 
units.  Many of the coding decisions depend on the target programming language used. The 
program has to satisfy the basic features like readability, simplicity, clarity etc. Once programs 
are written, one needs to thest them to know the defects present if any. This process is called 
debugging. The goal of testing is to identify the existence of defects, and debugging is the 
mechanism to locate the error, repair them and test the program again. 
 



Software Engineering | 13 

 
 

1.4.4 Testing 
In order to ensure that the system conforms to the specification, verification and validation (V&V) 
activities need to be carried out. Small programs may be tested as a single unit. However, a typical 
software system, is expected to carry out testing at three levels: Unit testing, System testing and 
Acceptance testing as specified in figure 1.7. 
 
In unit testing, individual modules or components are tested independently. These entities could 
be functions or methods. 

 
Fig. 1.7: Levels of Testing 

 
In System testing, the individual units are integrated to make up a system and are tested to locate 
errors if any. Further the system’s compliance with that of functional and non-functional 
requirements is also verified.  
In Acceptance testing, the system is tested with real data supplied by the customers or users. 
During this testing, the user can verify whether the system meets their expectations. Acceptance 
testing is sometimes called alpha testing.  
The test cases for each level of testing can be derived and based on the outcome of testing, test 
reports are generated. 
 

1.4.5 Evolution and decommissioning 
Change is inevitable in most of an organization’s technical and mangerial processes. However, 
there is a need to manage the change requests. Software maintenance or evolution involves the 
software engineering activities that need to be carried out after the delivery of the software 
product to the customer. There are three types of maintenance 
 Corrective: In this type of maintenance, the system is modified to remove bugs. 
 Adaptive: In this type of maintenance, the system has to work on new platforms and 

environments.  
 Perfective: In this type of maintenance, changes may be made to the existing functionalities 

of the system, or new functionalities may be added. 
 



14 | Software Development Process 

 

Change management process is represented in Figure 1.8 

 
Fig. 1.8: Change Management Process 

 
The change request is evaluated whenever the modification request is initiated to check its need. 
If the change is not relevant or not immediately desired, then the change request is closed. 
Otherwise, the expected changes are proposed, and modification is done to the system. Once 
the changes are realized, regression testing is done to check for any side effects to the system 
due to modification. Once the regression testing is successful, it is checked whether the changes 
made to the system are acceptable. If changes are acceptable, the master files are updated, and 
the process stops.  
 
When the software life cycle completes i.e whenever software becomes obsolete, there is a need 
to have a proper closure process. The existing software assets have to follow proper discard 
process. Further, the historical data should be made available for the future systems.  

 
1.4.6 Software Development Process 

The objective of software engineering is to deliver the system or product as per the customers’ 
expectations. In addition, the product developed is expected to be of quality which is to be 
completed within specified time and available budget. This is possible only when a proper, well-
defined and appropriate process is realized. 
 



Software Engineering | 15 

 
 

The Software development process is an abstract representation of a software process. The 
Software Life Cycle refers to the period from its inception till its retirement.  In the software 
development process, the emphasis is on activities related to software production including 
analysis, design, coding and testing. The importance of such a development process leads to 
various models being proposed from time to time. The generic activities of process models are 
discussed in previous section.  Software Process models are generally classified into two 
categories: Generic development process and Iterative development process.  
 

 
Fig. 1.9: Taxononomy of Software Development Process 

 
The generic software development process model specifies the primary steps to developing the 
software from scratch or using the already existing systems. In order to address some of the 
problems of the generic development process, the Iterative development process has evolved. Fig. 
1.9 specifies the taxonomy of the software development process models.  
 
 

1.5 GENERIC DEVELOPMENT PROCESS 
 

Generic development models are widely used in software development. In this section, two 
generic process models are discussed.  
 
 Waterfall model 
 Component based software development 

Software 
Development 

Process Models

Generic 
Development 

Process

Waterfall Model

Component 
Based 

Development

Iterative 
Development 

Process

Evolutionary 
Model

Incremental 
Development 

Model

Spiral Model

Unified Process 
Model



16 | Software Development Process 

 

1.5.1 Waterfall Model 
The first generic model of software development is the waterfall model. It was first proposed by 
Royce (1970) in which the phases are organized in a linear order. The variations of this model 
evolved over a period of time to fit into the defined processes of an organization.  The waterfall 
model is a plan-driven model where each activity is clearly defined and documented.  The model 
is shown in fig. 1.10 
 

 
Fig. 1.10: Waterfall Model 

 
In the requirements engineering phase, a feasibility study is carried out. If the project is feasible, 
then the requirements are gathered. The systems functionality, constraints and goals are identified 
which are further elaborated to form a requirements specification.  
In the design phase, the solution is planned for the problem domain identified during the 
requirements engineering phase. This includes high-level design and low-level design. The 
system’s architecture is identified, system may be divided into modules, interfaces are defined, 
algorithms and data structures are defined. 
In the implementation, the design is translated into the source code. The programs written depend 
on the target programming language used. Then the modules of the system are tested to verify 
whether their functionalities conform to module specifications. 
In the testing phase, the individual units of programs are integrated and tested to ensure that the 
system meets the requirements stated in the beginning. Once beta testing (testing the functionality 

Requirements 
Engineering

Design

Implementation

Testing

Operation & 
Maintenance



Software Engineering | 17 

 
 

and other quality requirements like security, reliability etc.), is completed, the system is delivered 
to the customer.   
In the operation and maintenance phase, the system is initially installed and used by the user. 
During this process, modification requests may be initiated by the system’s users. This includes 
correcting errors, enhancing services, and making changes to the system. 
The completion of each phase results in certain artifacts. The waterfall model’s next phase doesn’t 
begin until the current phase is freeezed. There is a possibility that during the design, problems 
with requirements may emerge. Similarly, during coding, design issues may be found etc. Under 
such a scenario, the waterfall model can’t be a simple linear model because the development may 
not proceed further, and it may be iterated to resolve the issues at one phase or the other.  
The advantages of the waterfall model are as follows: 
 It is a simple model where the task of building software is divided into well-defined phases, 

and each phase deals with a specified activity. 
 Each phase results in a definite artifact that fits into other engineering processes. For example, 

the artifact produced from requirements engineering activity includes a feasibility report, 
requirements specification, and project planning document. The artifacts produced from 
design activity includes Software design document. The artifact of the Implementation phase 
includes programs. The artifacts of the testing phase are test plans and test reports. Finally 
the manuals are prepared for the installation and support activities.  

 It is easy to manage and control software development using the waterfall model as each 
phase is clearly defined, and the artifacts or documents produced by each phase is specified. 

 
The disadvantages of the waterfall model are as follows: 
 The software is available for use only after the final phase of the model. The user is not aware 

of how the software works till it is deployed. If the user is not satisfied, the entire process 
may have to be repeated resulting in cost and time overrun issues. 

 Since requirements are frozen before proceeding to the design phase, subsequent changes to 
the requirements are challenging to manage. Further, the required hardware is selected at the 
end of the requirements phase. The hardware may become obsolete for larger systems when 
the final software is ready to deploy.  

The waterfall model can be used when the requirements are complete and consistent and are not-
likely to change during the development process. Since the waterfall model resembles other 
engineering models, it is still a widely used model. 
 

1.5.2 Component Based Software Development 
Effective reuse of software assets can enhance the productivity of a system. For rapid system 
development, it is essential to reuse the system or its modules or functions. Since the reused 
module or function is properly tested, it reduces effort for development and testing. The 
development team can use software assets if they are aware of design and code of similar systems. 
In specific scenarios, the module or function to be reused can be modified to fit the requirements 
of current system.  



18 | Software Development Process 

 

Component-based software development or reuse-driven development is the process of 
developing a system that mainly aims to reuse the existing software assets.  
The reuse-oriented software development is expected to maintain a database of reusable software 
assets or components. This is often referred to as component repository. Such components which 
are commercially packaged for specific functionality and are available for the industry needs are 
referred to as commercial off-the-shelf systems (COTS). The component-based software 
development process is represented in fig 1.11 
 

 
Fig. 1.11: Component Based Development Process 

 
In the first phase requirements, analysis and specification is done to generate requirements 
specification document. Given the requirements, a look-up is performed in the component mining 
phase to search for a component that satisfies the given specification. The component can be a 
source code, architecture, design or documentation. There may be a component in the repository 
which can be used as it is, or its partial functionality could be reused, or there may not be any 
component satisfying the given requirements.  Sometimes requirements are modified based on 
the available components. If the modifications are not possible, the component repository is 
searched again to find an alternative solution.  
In System design with reuse phase, a new framework is designed, or the existing one is reused. 
Other new components are designed if the reusable components are not available. They are 
designed in such a way that they may be reused in future requirements requests. In development 
and integration phase, software assets that cannot be externally procured are developed, and 
components of COTS system are integrated to produce a system meeting the requirements. In the 
testing phase, the developed system is tested with that of requirements specification. During this 
phase, newly developed components or modules are tested thoroughly, and after integrating the 
same with other available components or COTS, it is again tested for integration testing and 
system testing.  
Component-based software development has the advantage of rapidly developing software, 
reduceing the cost of development. This also reduces the testing effort. However, sometimes the 
system developed may not meet the customers’ expectations. Further, the new or modified 
components stored in the component repository are not in the control of the organizations using 
them.  
 
 
 
 



Software Engineering | 19 

 
 

1.6 ITERATIVE DEVELOPMENT PROCESS 
The activities of process development are not always linear. There is a possibility that some of 
the process activities may be regularly repeated. This may be needed when the requirements are 
not precise or when there are changes expected to the requirements specification. The 
evolutionary, Incremental, spiral, and Unified Process involve iteration of a few of their phases.  

 
1.6.1 Evolutionary Model 

 
This model aims to address a few issues of waterfall model. Instead of freezing the requirements, 
an initial version of the system is developed using the essential requirements available. At this 
stage, there is a basic understanding of requirements. However, there is a possibility that new 
requirements may be included or there is a need for changes to the existing requirements 
specification. 
 
There are two variants of the evolutionary model: 
 
 Exploratory Development: In this model, the objective is to work with the stakeholders, 

explore the requirements and deliver the system. The development activity begins when the 
basic functionalities of the system are understood. The system evolves as the customer 
requests new features. 
 

 Throwaway prototyping: The throwaway prototype development begins when the 
preliminary requirement specification document is available. At this stage, there is a 
possibility that the entire requirements may not be known. Even if the customer or 
stakeholder cannot give the entire requirements, a prototype can be built with the initial 
requirements. The activities of the prototyping model are represented in fig 1.12. 
 



20 | Software Development Process 

 

 
Fig. 1.12: Prototype Model 

 
Once the prototype is developed, it is given to the customer to use and evaluate. The customer 
may accept the prototype, may request a modification or reject the prototype. The customers 
continuous feedback helps produce final requirements specification generally known as 
operational requirements. It may be noted that the prototype is to be developed only for the 
requirements which are not clear. The requirements which are complete and consistent don’t need 
a prototype. Further minimum documentation is expected in prototyping for rapid development 
of the software.  
The evolutionary model applies to projects where it becomes difficult to determine the 
requirements and the customer is unclear about the same. The prototype may help in evolving the 
system over some time. 
Generally, there are two problems with evolutionary models. Firstly the evolutionary models may 
not be suitable for large and complex systems where different teams develop different aspects of 
the system. It will be challenging to integrate the elements of the system across teams. Secondly, 
there are issues with managerial aspects. As no definite deliverables are produced, the managers 
cannot measure the progress of the systems development. It will not be cost-effective to develop 
documents for system version.  

 
1.6.2 Incremental Development Model 

 
One of the drawbacks of the waterfall model was that by the end of the requirements engineering 
phase, the requirements are frozen. Whenever a change is requested, it is not possible until the 
system with current functionality is delivered. These changes can be taken only during 
maintenance. This increases the cost and time for the development and may produce a software 
product that may not wholly satisfy customer needs. 
 



Software Engineering | 21 

 
 

The goal of the incremental development model is to manage the requirements changes. It helps 
the customer to continuously give feedback to the system as it is delivered in parts.  An increment 
is a subset of requirements. In the incremental development process, the requirements are divided 
into several increments. Each increment is designed, implemented, and tested to produce a build. 
Each build produces an executable code. This build is now available to the customer to use and 
give feedback, if any. Other increments are also under development in a pipeline. The subsequent 
increments are integrated and tested to produce a build that provides a composite functionality of 
increments. The first increment usually contains the basic functionality to be implemented. The 
process of incremental development is depicted in figure 1.13. 

 
Fig. 1.13: Incremental Development Process 

In the first phase, requirements collection and analysis are performed. In the second phase, the 
basic functionality is selected as an increment from the requirements specification. In the third 
phase, the increment is designed, and then increment is developed and tested.  The tested 
increment produces a build available for the customer to use and give feedback. In integration 
phase two builds of increments are integrated and tested. The increments should be planned in 
such a way that those increments which are not clear or are expected to have several changes are 
postponed to be taken up later. 
The increments are expected to be relatively smaller and has to deliver a functionality. There is a 
general perception that incremental development process takes more time as each increment has 
to go through design, development, testing and integration phases. However these increments are 
realized in a pipeline as depicted in figure 1.14.  

 
Fig. 1.14: Pipellining mechanism to manage increments 



22 | Software Development Process 

 

Generally, each activity is carried out by separate teams. For example, analyst, designer, 
programmer, and tester are usually separate roles. Fig 2.11 shows that at some time during 
incremental development, entire development team will be executing one task or another. For 
example, when increment I5 is being analyzed, I4 will be designed, I3 will be under 
implementation, and I2 in the testing phase. Once an increment is ready, Build1 is available to 
the customer. Similarly, when Build2 is tested successfully, it is integrated with the previous 
build, and integration testing is performed.  
The advantages of the incremental development model are 
 The customer can see part of a working system as few builds are ready.  
 Customers can start using the system in a short period of time 
 The feedbacks given by the customer may help the later increments. 
 Requirements can be prioritized, and the highest priority requirements can be delivered first, 

and later the subsequent increments are integrated. Thus it provides continuous integration. 
 

1.6.3 Spiral Model 
The spiral model combines the good features of the waterfall model and Evolutionary models. It 
was proposed by Boehm in 1988. In this model, the activities are not organized sequentially. 
However, they are represented as a spiral, so different alternatives can be planned if needed. The 
spiral model addresses the risks during software development 

 
Fig. 1.15: Spiral Model [Boehm-1988] 

 
Spiral model is depicted in figure 1.15 Each cycle in the spiral represents a phase of the software 
development process. Each cycle begins with the identification of objectives and constraints for 
each phase. Project risks are identified, and risk aversion strategies are planned. The next step is 
to perform risk analysis. For each identified risk, necessary steps are to be planned to reduce the 



Software Engineering | 23 

 
 

risk. For example, if there is a risk that the requirements are unclear, a prototype may be 
developed.  
In the next step, the development model is decided. This depends on the risk evaluation done 
during the previous step.  If there is a risk of integrating the modules, then the waterfall model 
may be used. If there is a risk involved with a change in requirements, then incremental model 
may be used etc. In the last step, the project is reviewed and a decision is made to plan the next 
phase. For example, if the requirements are not validated, the next cycle is planned to improve its 
prototype.  
 
A risk is the probability that the system results in an organization’s potential. The risk may be 
reduced, but it can’t be eliminated. Before a risk actually happens, it’s better to know the 
alternatives to be taken so that they can be realized to reduce the risk. Risk exposure is the 
measure that can be used to assess the risk in each step. 
 

Re= Pr(e) * L 
 
Where Re is risk exposure, Pr(e) is the probability of the occurrence of event e and L is the loss 
occurred due the risk. 
 

1.6.4 Unified Process Model 
The Unified Process model is suitable for modern systems development.  It combines the best 
features of almost all models available in the literature. It brings together advantages of the 
waterfall model, iterative model, evolutionary model, and incremental model so that the good 
practices can be adopted. Thus unified process model is sometimes known as a hybrid model.  
The Unified Process was proposed by Rumbaugh et. Al. (1998-99).  The Unified Process supports 
iterative and incremental development where the development is done in short and fixed intervals 
called Iterations. Each iteration goes through the primary phases of software development which 
includes requirements analysis, design, implementation, and testing.  
 



24 | Software Development Process 

 

 
Fig. 1.16: Unified Process  

 
 
Unified Process has four phases viz Inception, Elaboration, Construction, and Transition, as 
depicted in the figure 1.16. The goal of the Inception phase is to define the scope of the system. 
This identifies the entities which are interacting with the system and their responsibilities.  In 
general, the requirements are captured and defined in this phase.  The outcome of this phase is to 
define the objectives of the project clearly.  
The goal of the elaboration phase is to understand the problem domain, establish a project plan 
and define high-level architecture of the system.  The milestone of this phase is to produce a 
lifecycle architecture. 
The construction phase deals with design and implementation.  The increments can be developed 
in parallel and integrated. The outcome of this phase is a working software that is ready to be 
delivered to the customer. The transition phase deals with the operation and deployment of the 
system in the real-time environment. These four phases constitute the development life cycle.  
The Unified Process recommends six best practices referred to as good software engineering 
practices. 
 
 Develop Iteratively:  The increment should be selected in such a way that the highest priority 

features have to be developed and delivered early so that an early feedback is received from 
the stake holders. If the customer is not totally satisfied, the changes can be done in the 
increments. 

  Requirements Management:  The changes requested by the customer have to be explicitly 
managed such that the changes are analyzed before accepting them. 

 Use component-based architecture: It is expected that the system architecture consists of 
manageable components that can be reused, modified, and plugged effectively. 

Product
Test reports

Feedback

Transition

Sotware 
Current release 

information
User manuals 

and 
doumentation

Test plan

Construction

Use case model
Architectural 

description
Non functional 

charcteristics
Revised risk 

plan

Elaboration

Requirements 
elicitation & 

Analysis
Planning  & 
Scheduling
Initial risk 

assessment 
plan

Inception



Software Engineering | 25 

 
 

  Model Visually:  It is suggested to use visual modeling tools like Unified Modelling 
Language (UML) for better understanding of the system. 

  Maintain Quality:  It has to be ensured that the system confirms to the required quality 
standards. 

 Manage change: It is expected that proper Change management and configuration 
management procedures are in place. 

 

1.7 AGILE DEVELOPMENT PROCESS 
Systems across the globe often change rapidly. The business can sustain itself if it can respond to 
the changing economic situation, market competition, and development of new and emerging 
systems. This is possible if the software with desired changes can be developed quickly to respond 
to the competitors. Hence rapid application development is one of the essential critical 
requirements, and at the same time, the rapid delivery of the software should not compromise its 
quality.  
As businesses evolve, it is impossible to have a complete set of requirements. Furthermore, as 
there is no clarity, the requirements may change because the customer needs to figure out how 
the system is foreseen as the actual requirements are unclear.  
  

 
1.7.1 Plan Driven Models 

 
In the late 1990s, the software development models had issues when the clients wanted to add a 
new feature or modify an existing feature to the system during its development. Though changes 
were incorporated, they resulted in increased costs, scope changes, and delays in the delivery of 
the product. Earlier, these delays were accepted. Organizations will fall behind in the competition 
due to the dynamics of the market and consumers if the changes requested are not implemented 
appropriately. 
The planned models. like the waterfall model, involve realization of series of steps in a linear 
order, as depicted in figure 1.17. 

 
Fig. 1.17: Plan-Driven Model  

 

 

 



26 | Software Development Process 

 

The plan-driven models are not suitable for small and medium-sized projects.  In the planned 
model, the requirements engineering process is done comprehensively before realizing the 
system. Detailed specification and documentation are required, and any changes to the system 
needs specification and documentation to be changed.  Such models are suitable for large projects 
and safety-critical systems. 
The drawbacks of the planned-driven model are as follows: 

 Changes are difficult to manage 
 Less focus on end-user or client needs. 
 The effort required to test the system is high. 
 Overtime and over budget.  

 
1.7.2 Agile Model 

 
Agile defines a set of principles used in software development that enables faster delivery and 
early response to changes desired by the customer. Agile refers to a set of methods and practices 
that focuses on iterative and incremental development. Each iteration in the agile process (fig 
1.18) helps develop a piece of the product called increment that can be tested, deployed, and 
changes to the same may be requested.  

 
Fig. 1.18: Agile Model  

 
The agile approach enables the teams to deliver value to their customers. Agile teams deliver 
work in small but usable subsets called increments. Selection of requirements, planning, 
developing, and releasing the increments occur continously. This allows teams to respond to the 
changes quickly, which was a drawback in the planned-driven approaches. Unlike plan-driven 
models, little documentation at a time is required as only a subset of requirements are being 
realized. This helps in making changes to the system in an effective way, and changes to the 
documentation are also minimal. The documentation is built incrementally during the agile 
process. The agile process further allows customer collaboration. During the collaboration, 
feedback is taken from the customer, which helps manage the changes to the increments. Unlike 
the planned-driven models, the agile approach will not have a rigid plan. There can be flexibility 
in planning the scenarios based on the evolving requirements, changes, and priority of the 
requirements being realized.  
 



Software Engineering | 27 

 
 

The advantages of the Agile process are as follows: 
 It helps in seamless interaction between the client and the project team. 
 It enables improved transparency to clients in every phase of the project. 
 The delivery of each increment’s outcome is predictable and can sometimes be earlier 

than expected as it is clear to understand the pieces of the system. 
 The project’s cost is predictable and follows a rigid schedule because of improved 

customer interactions. As we progress, the requirements of the client are better 
understood. 

 Customers can prioritize the system’s features, allowing the team to ensure the maximum 
project value. By assessing customers’ prorities, the agile team can deliver expected 
functionalities. 

 The team can deliver cutomer value by focusing on the user’s needs.  
 

1.7.3 Agile Principles 
The Principles (Agile Manifesto) that have to be followed to realize an Agile model are as 
follows: 

 Customer Satisfaction: Customer satisfaction needs to strive through early and quick 
delivery of increments. If the part of the system can be delivered to the customer quickly, 
it increases customer satisfaction. 

 Change requests: Change need to be addressed even during the late development process. 
There should be flexibility in design so that the changes can be accepted at any time in 
the future.  

 Deliver Frequently: Ensure that the software is delivered regularly in smaller modules 
and continuously integrated so that the final artifact results in a quality product. This 
should be done regularly so that the customers use the software and give feedback at 
regular intervals.  

 Collaboration. Developers and businesses need to work together throughout the project. 
Involving customer, developers and team members, leads to better collaboration and 
helps in receiving continuous feedback from all the stake holders, and getting all together 
will increase the business values. This also makes the process more transparent. The 
interactions within the teams should increase for greater understanding and clarity. 

 Working Software. The deliverable must be completed regularly so that the customer 
can give feedback, which not only helps improve the current build but also helps in 
knowing the customer’s perspective for the further pieces of software which will be 
released in time to come.  

 Good design: Agility can be improved by focusing on better design. Detailed design of 
small working pieces will be better and quicker than designing the entire system at once. 
Further, it helps in developing pluggable components. 

 Simplicity: The effort required on unimportant or non-value activities has to be 
eliminated. Only the desired activities need to be included. 

 



28 | Software Development Process 

 

1.7.4 Agile Methodologies 
Agile practices can be demonstrated by following various agile methodologies. This includes XP 
(Extreme Programming), SCRUM, LEAN, Kanban, etc. In this chapter, the SCRUM framework 
will be discussed in detail. 
SCRUM is a framework that was first introduced in 1986  that helps team members with diverse 
expertise to work together to achieve a common goal. In SCRUM team, one can learn from 
experience and brainstorming that helps to enjoy success, perform necessary corrections in case 
of failures, and learn from mistakes. In the SCRUM, the work is split into several iterations called 
sprints. Each member in the sprint team has a role to play. They are about 5 to 8 members in a 
sprint team. The sprint team is a cross-functional team consisting of members with diverse 
expertise. This not only increases productivity but also enhances the motivation of the team.   The 
advantage of the SCRUM is that the team can efficiently provide project deliverables within the 
estimated budget and planned schedule. Each sprint is divided into several tasks to keep track of 
the sprint backlog.  
There are various roles of a SCRUM team. This includes the Product Owner, Scrum Master and 
the Scrum Team. 

 The Product owner is primarily responsible for maximizing the benefits by determining 
the product features, prioritizing into a list what needs to be focused on for the next 
sprint, and constantly reprioritizing and refining it. A product owner has to assess the 
customer’s requirements, identify the features and prioritize the same.  

 Scrum Master helps teams learn and apply scrum to obtain business value. He/She helps 
remove impediments, protects them from interference, and helps the team to adopt agile 
practices. Whenever there are impediments, the scrum master should help teams to solve 
and move ahead. His focus is to see the scrum team works. There should be a good 
handshake with the product owner and scrum master.  

 Scrum Team is a collection of all individuals working together to deliver the stakeholders 
requirements. They contribute at the individual level. This team should clearly 
understand the deliverables which they have to deliver. 

 
The various artifacts of Scrum are as follows: 

 Product Backlog: It consists of a list of features, changes to be made to the existing 
features, bug fixes, changes to infrastructure, and other activities that the team needs to 
deliver. 
 

 Sprint Backlog: The backlog contains the tasks the team aims to complete to realize a lot 
of work. This piece of software is delivered by the team in a short period of iteration, 
typically 2-4 weeks. Each sprint can be divided into several tasks.  
 

 Product increment:  The part of a system that is ready to use at the end of a sprint is an 
increment. As the sprints evolve over time, system’s functionalities have to be integrated 
incrementally so that the system is working correctly. The combination of all completed 
sprints is a product increment. The customer can start using the product increment and 
give feedback for changes, if any.  



Software Engineering | 29 

 
 

 
The Scrum Framework is specified in figure 1.19.  
 

 
 

Fig. 1.19: SCRUM Framework  

 
The product owner collects the requirements from the customer and lists the features needed to 
realize the system. These features of the system are listed in a product backlog. The product owner 
and the Sprint team prioritize the requirements based customer’s needs. The Sprint planning 
phase defines what can be delivered in the sprint. The features added to the product backlog are 
commonly referred as a Story. 
 
A story is the basic unit of work in the Agile framework. A user story gives a general description 
of the software feature from the perspective of stakeholder or a customer. The general form of a 
story is as follows 
 

As a <type of user>  I want to <perform some task> so that I can <achieve some goal> 
 

Eg.  As a Consumer I want to pay bill so that I can settle my bills on time 
 
Each story is divided into several tasks. These tasks have to be designed and implemented to 
complete a sprint. Test cases are planned (Acceptance test criteria) for each task so that test cases 
can be executed after its implementation. The list of tasks for each sprint is maintained in Sprint 
Backlog. Typically a sprint is realized in 2-4 weeks of time. At the end of each day, the sprint 
team meets for short time to provide updates about the work done, their following plans and any 
issues they encountered. This is known as daily scrum or stand-up meeting.  
 
In the above example, the pay bill story can be divided into several tasks. This includes (a) Design 
and development of a pay bill page or form with specific validations, (b) Search for the bill, (c) 
payment options (d) Generate acknowledgement. These tasks are stored in a sprint backlog. For 
each task, test cases are planned so that functionality can be tested once it is realized. 



30 | Software Development Process 

 

 
Once the sprint is completed, it is tested and released. The customer starts using the increment 
and constantly gives feedback to the customer. Accordingly, the changes are made to the system. 
In sprint review meeting, the scrum team assesses what was achieved in the sprint. A sprint 
retrospective meeting is conducted before the next sprint starts but after the completion of the 
current sprint review. Sprint restrospective meeting is used to assess what went well and what 
can be improved in the coming sprints.  
 

1.7.5 Banking Scenario 
 

Consider the automation of the Personal Banking System (PBS). The product owner collects the 
requirements for the realization of PBS. These features are stored in a Product Backlog. Assume 
that the Product Backlog includes the following features: 

 
 Open Account 
 Perform transactions 
 Loan Processing 

 
Assume that in the sprint planning meeting, the product owner and sprint team prioritize the 
stories in the following order: Open Account, Perform transactions, and Loan Processing. 
Consider the first sprint, “Open Account.” The different tasks for the “Open Account” 
functionality are as follows 

 Develop a user interface seeking personal information along with necessary validations 
 Create a database to store the personal information 
 Provide options for upload of the necessary documents. 
 Develop the KYC (Know Your Customer) process 

 
The above tasks constitute the sprint backlog. Before realizing each of these tasks, the test 
Cases (Acceptance test criteria) are generated for each of these tasks.  

 Check whether the Customer is able to access the Account Opening form 
 Check whether the Customer is prompted to enter the personal information 
 Check whether necessary validations are done 
 Check whether the data is stored in the database 
 Check whether the customer can upload the necessary documents 
 Check whether KYC is completed and the Customer receives OTP 
 Check whether the OTP validation is completed and the customer is given the necessary 

acknowledgement 
 
 

   



Software Engineering | 31 

 
 

Similarly, there will be a sprint backlog for each of the stories listed in the product backlog. Each 
of the tasks listed in the sprint backlog is implemented and then tested. Once all tasks are 
completed, the piece of the software is ready for the customer to use and give feedback. Once the 
second story is ready for release, the two increments are integrated to test the functionality of 
both increments together. This helps in achieving seamless integration of various increments. 

 
   

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



32 | Software Development Process 

 

UNIT SUMMARY  
 

 Software Engineering Prelimaries 
o Software  
o Software Engineering Vs Systems Engineering 
o 4P’s of Software Development 
o Roles, activity and artifacts 

 

 Challenges in Software Development 
 

 Software Quality Attributes 
 

 Software Development 
o Software Process 
o Software Development Activities 

 

 Generic Development Process 
o Waterfall Model 
o Component based software development 

 

 Iterative Development Process 
o Evolutionary Model 
o Incremental Development Model 
o Spiral Model 
o Unified Process Model 
o Best Practices 

 

 Agile Development Process 
o Planned-Driven Model 
o Agile Model 
o Agile Principles 
o Agile Methodologies 
o SCRUM framework 

 

 

 

 

 

 

 



Software Engineering | 33 

 
 

  

EXERCISES 
 

Multiple Choice Questions 
 1.1 The Software assets generally include 

(a) Software (b) Operational instructions (c) Documentation  (d) All of the above 
 

1.2 Software development activities that are carried out after the deployment of the software is  
(a) Software Design (b) Coding (c) Software Maintenance (d) Software Testing 
 

1.3 A System is said to be_________ if it does not produce any dangerous or costly failures 
(a) Reliable  (b) Compatibe (c) Interoperable   (d) Maintainable 
 

1.4 The ability of the system to make use of optimal resources is its _________ 
(a) Efficiency  (b) Reliability (c) Maintainablility  (d) redundancy 
 

1.5 The ability of a system to exchange services or data with other systems is known as  
(a) Reliability  (b) Interoperability (c) Compatibility (d) Reusability 
 

1.6 Software maintenance, which deals with modification to the existing functionality or addition of 
new feature(s) is 
(a) Corrective maintenance   (b) Adaptive maintenance 
(c) Perfective maintenance   (d) Predictive maintenance 
 

1.7 In one of the following process models, each phase is frozen before moving to the next development 
phase 
(a) Incremental Model (b) Prototype Model (c) Waterfall Model (d) Spiral Model 
 

1.8 Risk management is implemented in one of the following process models 
(a) Waterfall Model   (b) Spiral Model   
(c) Incremental Model  (d) Unified Process Model 
 

1.9 The number of phases in the unified process model is  
(a) 5   (b) 2   (c) 3   (d) 4 
 

1.10 The goal of testing is to  
 (a) Correct programs    (b) Fail programs    (c) Design programs   (d) Find errors 
 

Answers of Multiple Choice Questions 

1.1 (d), 1.2(c), 1.3(a), 1.4(a), 1.5(b), 1.6(c), 1.7(c), 1.8 (b), 1.9(d), 1.10 (d) 



34 | Software Development Process 

 

Short and Long Answer Type Questions  
 
1.1 Why operational requirements and Documentation is needed for a Software 
1.2 Differentiate between the user and the system manual. 
1.3 Why do we need a System manual? Give reasons 
1.4 Differentiate between software and systems engineering 
1.5 What is the need for engineering software? 
1.6 List the issues you faced while developing a program or a software. Give reasons 
1.7 Describe the quality characteristics of a Software 
1.8 List and explain the artifacts of the requirements engineering process 
1.9 What is debugging 
1.10 What is the goal of testing 
1.11 What are the advantages and disadvantages of the waterfall model 
1.12 Specify the necessary pre-requisites required to use a Component-Based Software Development         
        Process 
1.13 Differentiate between Exploratory Development and Throwaway Prototyping 
1.14 List the advantages and disadvantages of Component-Based Software Development 
1.15 When the unified process model uses the good features of all process models, what is the need  
        for other process models?  Give justification  
1.16 List the best practices of Unified Process 
1.17 What is a Unified process? What are the milestones of each phase 
1.18 Differentiat between Plan driven and agile process model 
1.19 Explain the agile principles with the justification of each of these principles. 
1.20 Explain the SCRUM methodology. 
1.21 Explain when the Agile methodology can fail? 
 
 
 
PRACTICAL  
 
1.1 Download any open-source software. Lists its operational requirements and explore the user and 

system manual. 
 

1.2 Identify various processes in the following systems and identify roles, activities, and artifacts. Draw 
a process diagram.  
(a) Banking System (b) Railway reservation System (c) Online Shopping System 
 

1.3 Identify product backlog, sprint backlog for each sprint, tasks of each sprints and test cases of each 
sprints to develop (a) Railway reservation System  (b) Online Shopping System 

 

 



Software Engineering | 35 

 
 

KNOW MORE  
A Program consists of a set of instructions. The software includes a set of programs along with 
documentation and operational guidelines. The software which is developed without following 
standard practices may have many bugs, and will be harder to maintain. Hence a systematic 
approach for the program or software development is needed. 
A software process consists of a set of proven development activities. These activities need to be 
adopted for the development of software. The first step is the Requirements engineering process. 
The developer has to understand the needs of customers, or the developer has to understand the 
system being used by the customer. Several techniques are used for collecting requirements from 
the customer. This includes Interviews, Questionnaires, Record reviews, observations etc 
The developer may directly talk to the customer to understand the requirements. This can be 
through face-to-face interaction termed as Interviews. If there are many customers, interviews 
may not be the appropriate technique. In such a case, a questionnaire can be prepared and 
distributed to customers to collect the requirements.  Either of these techniques is insufficient to 
collect the requirements. For completeness additional techniques like record reviews and 
observations are used. In record reviews, the developer inspects the records which customers use 
in its operations. In the observation technique, the developer observes the activities done by the 
customer. The requirements collected can be classified as functional and non-functional 
requirements. The functional requirements depict the core functionalities of the system. 
Additionally, the non-functional requirements like security, readability, reliability, etc need to be 
considered as per the need. 
After understanding the requirements correctly, a plan has to be prepared such that the software 
is developed within the estimated time and budget. A graphical representation of the system helps 
better understand the system. Hence a software model is needed. The structure of the software 
system has to be decided at this stage. The design of a system typically includes its components 
or elements and the association between them. This is referred to as software architecture.  
A complex system can be better understood if it can be divided into sub-systems called modules. 
These modules can be further divided into sub-modules until the functional component can be 
properly designed and developed. Once the design is ready, it is converted to a target 
programming language. The code is developed based on the design produced. While developing 
the system, the non-functional characteristics need to be considered. For example, if one has to 
satisfy reusability, the code has to be developed in such a way that the functional units can be 
reused later.  
Once the coding is completed, each function or module is tested for bugs. Testing aims to find 
bugs in the system. Once individual units are tested successfully, the functional units are 
integrated and tested. Later the system is again tested with the actual inputs taken from the 
customer. The system is then deployed and tested. Once the system is built successfully, the user 
documentation and training process has to be realized. After delivery of the software product, the 
customer may request modifications to the system. There the software maintenance process 
begins. 
 
 



36 | Software Development Process 

 

REFERENCES AND SUGGESTED READINGS  
 

 Sommerville, I. (2016) Software Engineering. 10th Edition, Pearson Education Limited, 
Boston 
 

 Roger S. Pressman (2010) Software Engineering: A Practitioner's Approach, McGraw-Hill 
 

 Rajib Mall (2018), Fundamentals of Software Engineering, 5th Edition, PHI Learning Private 
Limited. 
 

 Pankaj Jalote (2010), Software Engineering: A Precise Approach, Wiley-India 
 

 Boehm-1988Conny, CC BY-SA 3.0 <http://creativecommons.org/licenses/by-sa/3.0/>, via 
Wikimedia Commons 

 
Dynamic QR Code for Further Reading  

 
 
 
‘ 

http://creativecommons.org/licenses/by-sa/3.0/


Software Engineering | 37 

 

 
 
 
 
 

d 

 

 

 

 

UNIT SPECIFICS  

Through this unit we have discussed the following aspects: 

 Requirements engineering and its need; 
 Requirements Taxonomy;  
 Requirements elicitation techniques; 
 Requirements Analysis;  
 Requirements Specification;  
 Requirmenets Validation; 

The practical applications of the topics are discussed for generating further curiosity and creativity 
as well as improving problem solving capacity.  

      Besides giving multiple choice questions as well as questions of short and long answer types 
marked in two categories following lower and higher order of Bloom’s taxonomy, assignments, a 
list of references and suggested readings are given in the unit so that one can go through them for 
practice. It is important to note that for getting more information on various topics of interest some 
QR codes have been provided in different sections which can be scanned for relevant supportive 
knowledge. 

      After the related practical, based on the content, there is a “Know More” section. This section 
has been carefully designed so that the supplementary information provided in this part becomes 
beneficial for the users of the book. This section mainly highlights the initial activity, examples of 
some interesting facts, analogy, history of the development of the subject focusing the salient 
observations and finding, timelines starting from the development of the concerned topics up to the 
recent time, applications of the subject matter for our day-to-day real life or/and industrial 
applications on variety of aspects, case study related to environmental, sustainability, social and 
ethical issues whichever applicable, and finally inquisitiveness and curiosity topics of the unit. 

 

2           Requirements Engineering          



38 | Requirements Engineering 

 

RATIONALE  

 

The first step towards developing software systems is to understand the needs or requirements of 
the customer. One of the reasons for the failure of the software systems is the inability to understand 
the actual customer’s requirements by the developers. Hence, a systematic approach is needed to 
collect, analyze, specify, and validate the requirements.  

The challenge for software developers is gathering all the customer’s requirements. A 
communication gap between customers and developers often leads to misunderstanding the 
customer’s requirements. If there is no clarity, then the system that is developed will not meet 
customer’s expectations, and the effort spent on developing the systems may get wasted.  

Once the requirements are collected, it has to be analyzed to remove any anomalies. Furthermore, 
understanding the requirements can be clear if a model is developed and the specifications are well 
documented. The requirements engineering process will also help to understand the requirements 
that evolve over time.  

In the requirements engineering process, the system’s feasibility is assessed first. Once it is found 
that the system is feasible enough the requirements collection begins. Several techniques are used 
to collect the requirements from the customers.   

The requirements collected may have several gaps or anomalies. In order to address the problems 
in the requirements, it is analyzed, modeled and detailed specifications are written.  If the 
requirements are correctly understood and documented, then the design and development will be 
as per the collected requirements.  

This unit helps students to understand the requirements engineering process. This includes 
feasibility study, requirements elicitation techniques, requirements analysis and modeling, 
requirements specification and requirements validation. 

       

PRE-REQUISITES  

Computer Programming (Diploma Semester-III) 
Scripting Languages  (Diploma Semester-III) 
 
 
 
 
 
 
 



Software Engineering | 39 

 
 

UNIT OUTCOMES  

List of outcomes of this unit is as follows: 
U2-O1: Understand the requirements elicitation techniques 
U2-O2:  Understand the requirements types 
U2-O3: Understand object-oriented and structured analysis paradigms. 
U2-O4:  Document the requirements specification  
U2-05: Understand the importance of requirements validation 
 

Unit-2 
Outcomes 

EXPECTED MAPPING WITH COURSE OUTCOMES 
(1- Weak Correlation; 2- Medium correlation; 3- Strong Correlation) 
CO-1 CO-2 CO-3 CO-4 CO-5 

U2-O1 2 3 1 1 2 
U2-O2 2 3 1 1 2 
U2-O3 2 3 1 1 2 
U2-O4 2 3 1 1 2 
U2-05 2 3 1 1 2 

 

  

 
2.1 REQUIREMENTS ELICITATION 

     

The requirements engineering process includes elicitation, analysis, specification, and validation. 
Once the system’s feasibility is assessed, the requirements collection has to begin. The processing 
of collecting the features or characteristics of the system from its users or customers is known as 
requirements elicitation or system study. The requirements elicitation aims to understand the 
system features from the customer. The requirements engineering team interacts with 
stakeholders to gather the services and features from the stakeholders.  
The stakeholders may express requirements in different ways. The requirements engineering team 
is expected to have the ability to understand the staekholder’s needs. Further, as there could be 
diverse requirements, an individual with experience in customer’s domain may can understand 
the system better. 
There can be various ways to collect stakeholder requirements, known as requirements elicitation 
techniques. This includes Interviews, Surveys, Record views, Ethnography, Stories or scenarios, 
Use cases, etc.  
 
 
 



40 | Requirements Engineering 

 

2.1.1 Interviews 
 

The requirements engineering team or the analyst interacts with the stakeholders to understand 
the features of the system to be developed or of the system currently in use. In these interviews, 
the requirements are collected from the resoponses given by the stakeholders. 
 
Interviews are generally of two types: 
 

 Structured or closed interviews:  The stakeholders answer questions prepared by the 
requirements engineering team. In structured interviews, responses to pre-defined 
questions will be collected. Hence it may not be possible to get more insights into the 
customer’s requirements based on the responses to pre-defined questions.   
 

 Unstructured or open interviews: The open interviews do not have any specific agenda. 
The requirements engineering team can ask questions to the stakeholders based on the 
interactions. The stakeholders are free to specify the system's features and express any 
difficulties in the system. However, the requirements engineering team may overlook 
some of the system's essential features, which otherwise would have been collected using 
a structured technique. 

 
It is preferred that both structured and unstructured interviews are required for the proper 
collection of requirements of a system. The requirements engineering team may begin 
collecting requirements in an unstructured way. However, as the interview process 
progresses, one of the team members may look into the predefined questions to check 
whether some critical questions related to requirements collection need to be covered. 
 
The interview is one of the preferred mechanisms for collecting requirements provided the 
requirements engineering team consists of members who are domain experts. For example, 
properly studying the banking system will be easier if the team members know the banking 
domain.   
 

2.1.2 Questionnaire 
An interview is a preferred approach to collecting requirements from customers. However, if 
there are many stakeholders, it will take more time to collect requirements through the interview 
process. In such a situation, a Questionnaire is used. A questionnaire consists of a set of questions 
to collect requirements from the stakeholders. The questionnaires generally consist of both 
closed-ended and open-ended questions. 
  
In close-ended questions, the stakeholders can pick answers from several choices. The user may 
be asked to select any of the two choices (True or False) or one option from multiple options or 
may have to select more than one option from the given options. In open-ended questions, the 
stakeholders can give descriptive responses to express the functionality or constraints of the 
system.  



Software Engineering | 41 

 
 

Though a questionnaire is used when the information has to be gathered from many stakeholders, 
there could be various issues. This may include problems with understanding a question or 
response by stakeholders, or in some cases; their responses may be biased. 
 

2.1.3 Record view 
Interviews or Questionnaires alone are not sufficient to gain a proper understanding of the system 
under study. In addition to interviews or questionnaires, other elicitation techniques like record 
view and ethnography must be used to get insights into the requirements collection.  
  
In record view techniques, the requirements engineering team gathers the data and facts from the 
records and documents to understand the system. For example, the requirements engineer may 
view the examination form and grade sheet to automate a result processing system. This helps in 
understanding the requirements correctly, and if any details are missed during the interaction with 
the stakeholders, they will be included in this approach. 
 
 

2.1.4 Ethnography 
Each organization has its way of functioning. In this fact-finding approach, the requirements 
engineering team studies the system by observing and examining the way the system works. In 
this way, the requirements are collected from the stakeholders. There are instances where the 
software systems are developed and delivered, but the stakeholders are unsatisfied. One of the 
reasons is that the requirements needed to take into account the social and organizational factors 
of the system. Ethnography helps to observe and understand the operational processes that help 
develop a system per the stakeholder's actual needs.  
  
For example, the general examination process is the same for all the Institutions across the 
country. However, each academic institutions have their requirements that differ from others. The 
Ethnography approach helps observe the system's functionality so that the requirements can be 
adequately understood.  
  
Generally, Interviews or Questionnaires are used to collect the requirements in the first phase. 
However, more than this will be required; hence other approaches like Record view, Ethnography 
are used for collecting detailed requirements.  

 
2.2 SOFTWARE REQUIREMENTS 
 

The software requirements indicate the customer's needs that describe the services a system is 
expected to provide. It also lists the constraints on the system's operations, if any. The process of 
collecting, analyzing, specifying, documenting, and validating the requirements is called 
requirements engineering.  



42 | Requirements Engineering 

 

Requirements are generally collected for the system that has to be developed from scratch. 
However, the requirements for modifications of existing systems can also be provided by the 
customer. This includes the addition of functionalities to the existing system or modifications to 
the functionalities already implemented.  
The major challenge in the requirements engineering process is understanding the customer's 
requirements. It is generally seen that there is a gap in understanding the requirements the way 
the customer wants. If the requirements are not properly understood, then each other phase of the 
software development will be erroneous. This can be addressed by following certain principles. 
Firstly, there should be a clear separation between various categories of requirements. Secondly, 
the collected requirements have to be analyzed and modeled to correct the anomalies in the 
requirements. Thirdly a detailed specification of the requirements is generally required for plan-
driven approaches. 

 
    2.2.1 User and System Requirements 

 
In the requirements engineering process, the developers realize the services that the customers or 
clients requested. The user requirements are the need statements expressed by the customer that 
gives an abstract description of what the system is expected to provide and the constraints of the 
system. They are generally written in the customers language that describes the system’s desired 
features to be developed.  
 
The system requirements or functional specifications are the detailed description of the system’s 
functionality, services and operational constraints. The system requirements include a structured 
technical document that details the user requirements. It is generally written for the developers of 
the system.  
 
Consider the example of the Student Results Processing System.  
 
Users requirements definition: 

 
Generate results of the students at the end of the semester 

 
System requirements specification:  

 Students register for the examination. 
 The instructor enters the marks of the eligible students before the last date of result 

processing.  
 The system computes the results of each student for the subjects registered and computes 

the grade.  
 Once the results are processed, they can be viewed. 
 Accordingly, the customizable reports can be generated. 

 



Software Engineering | 43 

 
 

2.2.2 Functional and Non-functional requirements 
 
System requirements are generally classified into functional and non-functional requirements. 
The functional requirements specify the features or services expected by the users or clients of 
the system. Thus a system can be viewed as a set of functions {fi}.  
Each function takes desired input(s) from the input set I and transforms it into an output.  
f: I→O indicates function f that transforms an input Ii from the input domain I to a value Oj in the 
output domain O. 
In addition to the input and output, the functionalities may also have pre-conditions. The pre-
conditions specify the conditions that have to be satisfied before executing a particular function. 
The functional requirements of the system requirements specification specified in section 2.2.1 
are as follows: 
 

Function Input Output Pre-condition 
Examination 
Registration 

Student fills 
examination form  

Acknowledgement Should be a valid 
student. 

Evaluate student Instructor enters 
mars 

Result computed Students should have 
appeared for 
examination 

Process Results Results of individual 
courses 

Final grade sheet All subjects marks 
has to be entered. 

Fig. 2.1: Functional requirements 
 
Additionally, there will be a function called “Generate report” which takes a user query and 
generates the corresponding reports. It could display the list of students who have secured specific 
grades, list of students who could not pass a course etc. The pre-condition for the “Generate 
report” function is that the result processing functionality is realized.  
 
The Non-functional requirements do not directly deal with the services or functionalities of the 
system. However, it represents specific constraints of the system. They constitute quality 
characteristics of the system and can vary from one application to another. This includes 
reliability, maintainability, portability, reusability, security, performance, usability etc.  
 
Performance: The ability of the system to fulfill the desired performance requirements. For 
example, it is desired that the system should be able to allow 10,000 students to register for 
examinations at a time without any delay. The examination registration is a functional 
requirement. However, the same functionality is expected to execute correctly when 10,000 
students access the system. 
 



44 | Requirements Engineering 

 

Reliability:  The ability of the system to avoid dangerous or costly failures. For example, on the 
last day of the examination registration, if the system fails and can't recover quickly, it may lead 
to chaos, thus making it unreliable. Hence there is a need to plan for recovering the system within 
a short period in case of severe failures. 
 
Portability: The ability of the system to work in other environments. For example, suppose the 
system is developed in one operating environment. In that case, it should be able to work on other 
environments (on different hardware or software environments) with minimal changes. 
 
Usability: The ability of the system to provide its users perform tasks efficiently without any 
difficulty. For example, a user with any background should be able to use an application easily. 
 
Security: The system's ability to ensure that it is protected against any unauthorized access or 
attacks. Only authorized users must be allowed to use the system. It is to be ensured that the data 
is protected against any attacks.  
 
Maintainability: The ability of the system to accept the changes. Whenever changes or 
modifications are required to the system, it should be able to incorporate the same without many 
changes to the existing functionalities. 
 

2.3 REQUIREMENTS ANALYSIS & SPECIFICATION 
The requirements are collected using fact-finding techniques. However, the requirements can not 
be adequately understood and may result in developing a system that the customer may not 
accept. In order to better understand the system, it has to be modeled, i.e., a blueprint or a pictorial 
representation of the requirements might help in adequately understanding the same.  
 
Secondly, the requirements collected may contain several anomalies. This includes ambiguities, 
incompleteness, and inconsistencies. These anomalies need to be identified and rectified. 
The requirements analysis aims to properly understand the requirements so that there is no 
inconsistency, incompleteness, or ambiguity.  

 
 Ambiguity: When several interpretations of the same requirements can be made, it is 

ambiguous. In the result processing system example, if a student is not performing well in 
formative assessments, the mentors need to be informed about the same. In this requirement, 
"Student not performing" cannot be quantified as it is ambiguous. The requirements 
engineering team needs to address such ambiguity in consultation with the stakeholders. 
 

 Inconsistency: If the requirements collected contradict each other, they are said to be 
inconsistent. This may happen if one stakeholder specifies certain features of the system and 
other stakeholders contradict the same or the same stakeholders contradict the given 
requirements at different intervals. For example, one staff member in the Academic section 



Software Engineering | 45 

 
 

says that a student can be promoted if there are no more than 50% of backlogs, and the other 
staff says one can carry four backlogs. If there are six courses in a semester, then the given 
requirement regarding the promotion contradicts. 
 

 Incompleteness:  The requirement is incomplete if the customer or stakeholder cannot 
anticipate certain system features and may realize them later. However, the requirements 
engineering team or an analyst can suggest to the customer the incomplete requirements in the 
given system. For example, an academic institution enters the grades of students based on the 
marks secured. However, the policy of grading may differ from one institution to another. As 
a result, students may not get uniform grades when they take courses from other institutions. 
 

These anomalies have to be addressed by the requirements engineering team or an analyst in 
consultation with stakeholders.  
  
In order to properly understand the system, it is better to model it. There are broadly two 
paradigms for analyzing a system: Object Oriented Analysis and Structured System Analysis.  
  
Object-oriented modeling is an approach to writing a blueprint of the application that is used to 
develop object-oriented systems. Unified Modeling Language (UML) is used to write software 
blueprints. UML is a language that is used for visualizing the system. Additionally, detailed 
specifications are to be provided for each element in UML, and finally, it is translated into 
implementation. The target programming language used in this approach is an object-oriented 
programming language. The application is being developed using object-oriented programming 
constructs.  
  
Structured system modeling helps develop a blueprint of the application in terms of processes in 
the system. The target programming language in this paradigm is structured. 
 

2.3.1 Object Oriented Analysis 
 

Object oriented analysis is an approach to tranform the requirements into an object-oriented 
model. The significant artifacts of the object-oriented analysis phase are the use case model and 
identification of Analysis Classes. A use case model specifies the functionality of the system. 
 
The following steps are to be followed for modeling a use case 
 

 Identify Actors 
The first step in use case modeling is to identify actors in the system. An actor is an entity 
that interacts with the system or its functionalities and is generally outside the boundary 
of the system. It can be a human being, a hardware device, or a legacy system. An Actor 
can be visually represented as follows: 
 



46 | Requirements Engineering 

 

           
                                                      Actor_Name 

Fig. 2.2: Actor 

 
 Identify the behavior of each actor (use case) 

For each actor, identify its behavior which is a use case. A use case is a set of sequence 
of actions whose outcome is given back to its actor. The functional requirements are 
captured in use cases. An use case is visually represented as an ellipse. 
 
                                  
                                     
 

 
Fig. 2.3: Use case 

 
 Draw Preliminary use case diagram 

 
A use case diagram contains actors, use cases, and relationships. The relationship 
between an actor and a use case is an Association. Association is a structural relationship 
between two things. An Association can be unidirectional or bi-directional. An 
Association is represented by a thick single line between two things. 
 

Association  

Uni-directional association  

Fig. 2.4: Association  
 
 
A use case diagram is of the following form. 
 

 
Fig. 2.5: Preliminary use case diagram 

 

Use Case Name 



Software Engineering | 47 

 
 

 Refine use case diagram 
 
The use case diagram can be refined by visualizing relationships between use cases. 
There might be dependencies between use cases. If a particular functional requirement 
must be executed before the other functionality begins, then it is visualized using 
dependency relationship.  
If the change in specification of one thing reflects the other thing, then it is a dependency 
relationship which is represented using dotted arrow      
 

 
Fig. 2.6: Refined use case diagram 

 
The above use case diagram shows that the “Write Exam” use case is dependent on 
“Register Course” use case. A student can write an exam only if the registration for the 
course is completed.  

 Write use case specification 
A use case diagram alone is insufficient to understand the requirements. In order to 
ensure that requirements are complete, consistent and unambiguous, it is necessary to 
write a detailed specification. 
The general template for use case specification is given in the figure 2.7. 
 

Use Case ID:  
Use Case Name:  
Created By:  Last Updated By:  
Date Created:  Date Last Updated:  
Actors:  
Description:  
Preconditions:  
Post conditions:  
Normal Flow:  
Alternate Flows:  
Exceptions:  
Priority:  
Frequency of Use:  
Business Rules:  
Assumptions:  

Fig. 2.7: Use case Specification template 



48 | Requirements Engineering 

 

The first part of the above figure specifies the general characteristics of the Use case 
specification. This includes the use case name, name of the person who wrote the 
specification, date of creation, and modification. Then the detailed use case specification 
is given. Actors specify the entities which interact with various functionalities of the 
system which are captured in the use case. A short description of the use case is given in 
the Description section. The pre-condition specifies the conditions that must be satisifed 
before executing the function. The postconditions indicate the outcome of the realization 
of a given specification.  
The primary or Normal flow and Alternate flows specify the description of the sequence 
of activities of a given use case. Each of these activities indicates an activity or an action 
state. The exceptions generally specify the condition which is realized when the use case 
goal is not achieved. There can be several use cases in a system. However, based on its 
importance, the priority high, medium or low can be specified. Frequency of use 
indicates how frequently the actors will use the use case. It may be 
frequent/occasional/rare. The business rules for the implementation of the use case is 
specified in this section. The assumptions and dependencies, if any, in implementing this 
use case are given.  
 
 

 Identify Analysis Classes 
The analysis classes represent the abstract classes of the system. This is the first step for 
moving to design. In this step, the Classes are identified. This generally includes only 
class names. A class is the description of objects or a set of objects that share the same 
features and behavior. A class is generally represented pictorially as a three-compartment 
rectangle. 
 

Name 

Attribute(s) 

Operation(s) 

Fig. 2.8: Class representation 
 
Classes are identified from requirements statements generally using two methods viz. 
Noun Convention and CRC (Class, Responsibility, Collaboration) methods. 
 
First all the nouns are identified and listed. In the second step, redundant nouns (if any) 
are removed. For example, Student and Candidate are the classes identified in the first 
step. However, it is redundant as both refer to the same thing. One of them has to be 
discarded. In the third step, any vague nouns representing classes that are irrelevant to 
the system’s domain are removed. Finally, if any of the characteristics or properties of a 
class are identified as nouns, they are discarded and included as an attribute of a 
particular class.  
 
 



Software Engineering | 49 

 
 

In CRC (Class Responsibility Collaboration) method, the classes are identified as nouns. 
Furthermore, verbs are extracted from the requirements. The verbs may represent 
responsibility or collaboration. Responsibility indicates the behavior that will be realized 
as an operation or a method of a class, whereas collaboration refers to the methods that 
specify the association between various classes. A CRC card is equivalent to a postal 
card represented in Figure 2.9.  
 

Name 

Responsbility Collaboration 

Fig. 2.9: CRC Card 
* 

2.3.2 Case Study: Object Oriented Analysis 
 

The Indian Bank offers the following basic operations to its savings account holders: Deposit, 
Withdrawal &Transfer. The bank teller performs these operations on behalf of the customer. The 
teller verifies the account number, and if the account number is valid, s/he validates the signature 
of the customer and performs a deposit or withdrawal operation. For withdrawal operation, the 
teller additionally checks amount availability. Similarly, for transfer operation, the teller verifies 
both account numbers and checks for the availability of the amount in the source account. 
As the above scenario describes banking operations in an offline or personal mode, the teller acts 
as an actor on behalf of the customer. The use case diagram for the above scenario is given in 
Figure 2.10 

 
Fig. 2.10: Use Case diagram for banking scenario 

 

Deposit Amount, Withdraw Amount, and Transfer Amount are primary use cases. Verify 
customer is required before realizing the primary use cases. Hence there is a dependency 
relationship between such use cases, and verifying customer becomes the pre-condition for the 
other use cases of the system. In Unified modeling, stereotypes are used to provide additional 
meaning to the UML constructs. In the use case model, the most common stereotypes used are 
include and extends. Include relationship is a dependency relationship where the use case (to 
which the dependency arrow is pointed) is mandatory and part of base case use. In Figure 2.10, 



50 | Requirements Engineering 

 

verify customer is a mandatory use case and is a part of the Transfer Amount use case, i.e, the 
transfer amount use case cant proceed with its execution till the verify customer is realized. 
Similarly, exclude is a dependency relationship where use case is optional and may or may not 
be part of the base use case. 
 
The next step in use case modeling is to write specifications of the use case model, which is 
required to visualize the system.  
 

Use Case ID: Bank001 

Use Case Name: Deposit Amount 

Actors: Teller 

Description: This use case is used by teller on behalf of customer to deposit  
amount into the account 

Preconditions: The user must be a valid customer of the bank 

Post conditions: Amount is successfully deposited in the account 

Normal Flow: 1.1 Verify account number (A-1) 
1.2 Verify privileges of the customer (A-2) 
1.3 Enter amount (A-3) 
1.4 Acknowledge. 

Alternative Flows: A-1: If the account number is invalid, terminate the use case 
A-2: If the customer doesn’t possess valid privileges, terminate 

the use case. 
A-3: If the amount entered is improper, re-enter the amount 

Exceptions: If the account becomes dormant, necessary procedures are to 
be completed to make it active. 

Priority: High 

Frequency of Use: Frequently 

Business Rules: Teller, after verifying the account number, verifies the  
signature manually 

Assumptions: It is assumed that the customer details are available in the  
system. 

Fig. 2.11: Use case specification for Deposit Amount 
 
Analysis classes identified (Noun Convention): Customer, Account (Account number, Amount) 
 
 



Software Engineering | 51 

 
 

Refinement of classes through Domain Analysis: 
 
Customer (Id, Name, Address, Contact number, Privileges) 
Account (Account number, Amount) 
Transaction (Account number, Transaction ID, Type, Amount) 

Use Case ID: Bank002 

Use Case Name: Withdraw Amount 

Actors: Teller 

Description: This use case is used by the teller on behalf of a customer to  
withdraw the amount from the account 

Preconditions: The user must be a valid customer of the bank. 

Post conditions: Amount is successfully withdrawn from the account or a  
message is displayed 

Normal Flow: 2.1 Verify account number (A-1) 
2.2 Verify privileges of the customer (A-2) 
2.3 Verify amount (A-3) 
2.4 Update account. 

Alternative Flows: A-1: If the customer number is invalid, terminate the use case 
A-2: If the customer doesn’t possess valid privileges, terminate 

the use case. 
A-3: If the amount entered is improper or if the minimum 

balance is not maintained, terminate the use case or re-
enter the amount 

Exceptions: If the amount is not available in the account, the customer  
may still get a certain amount (Overdraft) 

Priority: High 

Frequency of Use: Frequently 

Business Rules: Teller, after verifying the account number, verifies the  
signature manually 
Checks the balance amount in the account 

Assumptions: It is assumed that the customer details are available. 

Fig. 2.12: Use case specification for Withdraw Amount 
 
 
 



52 | Requirements Engineering 

 

 
Further Refinement of classes through Domain Analysis: 
 
Customer (Id, Name, Address, Contact number) 
Account (Account number, Amount) 
Transaction (Account Number, Transaction Id, Date, Type, Amount, Remarks) 
 

Use Case ID: Bank003 

Use Case Name: Transfer Amount 

Actors: Teller 

Description: This use case is used by the teller on behalf of customer to  
transfer amount from one account to another account 

Preconditions: Both accounts should be valid 

Post conditions: Amount is successfully deposited in the target account 

Normal Flow: 3.1 Verify the account number of the source account holder 
(A-1) 

3.2 Verify the account number of the target account holder 
(A-1) 

3.3 Verify the privileges of customers (A-2) 
3.4 Enter Amount (A-3) 

Alternative Flows: A-1: If the customer number is invalid, terminate the use case 
A-2: If the customer doesn’t possess valid privileges, terminate 

the use case. 
A-3: If the amount entered is improper, re-enter the amount 

Exceptions: If the amount is not available in the bank, the customer may  
still get a certain amount (Overdraft) 

Priority: High 

Frequency of Use: Occasionally 

Business Rules: Teller, after verifying the account numbers, verifies the  
signature of source account manually 
Teller also checks the minimum balance in source a/c 

Assumptions: It is assumed that the customer’s details are available. 

Fig. 2.13: Use case specification for Transfer Amount 
 
 



Software Engineering | 53 

 
 

 
Analysis classes identified (Noun Convention): Customer, Account (Account number, Amount) 

 
Refinement of classes through Domain Analysis: 
Customer (Id, Name, Address, Contact number) 
Account (Account number, Amount) 
Transaction (Account number, Transaction Id, Type, Amount) 
//Against single TransactionId there can be more than one entry (one for deposit another for 

withdraw // 
 

2.3.3 Structured System Analysis 
 

Structured system analysis is an approach to transform the requirements into a model that will 
implement the system using procedural languages. The primary artifacts of the structured system 
analysis phase are the Data Flow Diagrams (DFD), Process Descriptions, and Data Dictionary. 
Unlike the object-oriented analysis approach, the structured analysis follows a top-down 
approach. The system uses a divide-and-conquer strategy where the system is split into several 
subsystems to reduce the complexity.  
 

 Data Flow Diagram (DFD) 
 
The Data Flow Diagram(DFD) describes the data flow between various system 
processes. The entire system is initially viewed as a single process, which can be 
decomposed into various sub-processes. The decomposition is continued till the sub-
processes are simple to understand.  
 
The symbols used to model a DFD are specified in Figure 2.14. 
 

Symbol Name 

  
External Entity 

 

 
   
 

 
Process 

 

 
Data Store 

 Data Flow 

Fig. 2.14: Notations used in Data Flow Diagram (DFD) 



54 | Requirements Engineering 

 

An External Entity is represented as a rectangle. These entities are external to the system 
but interact with the system by giving inputs or by extracting the reports. The external 
entity may also be used to represent any external devices and other applications with 
which the system may interact. The name of the external entity is specified in the 
rectangle. 
 
A circle represents a Process. They represent a function that takes inputs from the 
external entity and returns the results to the same or the other external entity. The process 
name is specified in the circle. The data store is represented using open-ended rectangle. 
The data store represents a file, database, or other data storage construct.  
 
Data flow notation is a directed arrow. It is used to show the flow of data in the system. 
Each of these data flows is labeled to show the data which is flowing in the system. The 
data may flow from an external entity to the process and vice versa, process to a data 
store, and vice versa and between the processes of the system.  
 
The basic principles for the construction of a Data Flow Diagram are as follows: 

 
o The data flow diagram of a system contains a hierarchy of the DFDs. As it 

follows a top-down approach, the process at the highest abstract level is 
decomposed into sub-processes as the granularity increases. 

o The first step is to model a context-level data flow diagram. It is also said to be 
a 0th (zeroth) level DFD. This is the most abstract DFD that represents the entire 
system as a single process. The external entities that provide input and get output 
from the system are identified. The data flow is specified using the directed 
arrows that have appropriate captions.  

o The next step is to model a first-level data flow diagram. That is, the system as 
a single process will be decomposed into several high-level functional 
requirements as stated in the software requirements specification document. 
Each of these requirements represents a process at the first level. Each of the 
functional requirements can be further exploded in the second level. The first 
level DFD is also used for system integration where various functionalities can 
be integrated into a system. 

o Each of the first level DFD processes can be further decomposed into sub-
processes. There can be a second level DFD for each of the process identified 
in the first level.  

o The decomposition can move further to any number of levels. However, the 
functional decomposition ends when it is observed that the process at the nth 
level is simple that can be designed and implemented. 

 
 Process Description 

Once the DFD is modeled, the specification of each of the processes has to be written. 
The generic format of the process description is specified in Figure 2.15 
 
 
 



Software Engineering | 55 

 
 

Name of the Process  

Input(s)  

Logic  

Output(s)  

Fig. 2.15: Process Description template 

 

Each process in the DFD has a name. The inputs to the process are specified using the 
data flow arrow, which is given by the external entity. The process tranforms the given 
input into an expected output. The logic required for this tranformation is written in the 
Logic section. The output is the outcome of the process, which is returned to the external 
entity. 
 

 Data Dictionary 
Data Dictionary is a file that contains characteristics of the data. In DFD, it is evident 
that the data flow across external entities, processes, and data stores. The characteristics 
of these data are stored in the data dictionary.  
The composite data items, if any, are converted into atomic items and entered into the 
data dictionary. For example, student_details can be a composited data item. It may be 
divided into Enrollment_no, Name, Course, etc.  
For each of the data items analyzed, its name, generic type, range of values, scope, etc 
are described.  

 
2.3.4 Case Study: Structured System Analysis 

 
University Library wants to automate the issue and return of books process for its Members. 
Members can be faculty, student, or Staff. Students can be issued four books at a time, faculty ten 
books, and staff can take two books at a time. Only the registered members are eligible for the 
issue of books. The books are issued for a period of 15 days. After that a fine of Rs. 1/= per day 
is charged. The fine is computed while returning the books. It is assumed that the member’s and 
book’s data is available. 
The first step is to model a context-level DFD by identifying the system's External entities (source 
and destination). In the given scenario, Member is the external entity, and it interacts with the 
system with a request for issuing a book or might return a book. Accordingly, the Member either 
receives the book or the acknowledgment of receipt. The context level DFD for the given scenario 
is specified in Figure 2.16 

 
Fig. 2.16: Context Level DFD for LIS 



56 | Requirements Engineering 

 

The LIS process is decomposed into subprocesses representing the high-level functional 
requirements. In the given scenario, the high-level functional requirements are Issue Book and 
Return Book. The shared data stores may be identified that help in planning for the seamless 
integration of sub-processes. The first level DFD for the given scenario is given in Fig. 2.17.  

 
Fig. 2.17: First Level DFD for LIS 

 
Each of the sub-processes can be decomposed into respective DFDs at the second level. As the 
hierarchy of the level increases, the abstraction decreases, and more details are added. The second 
level DFDs for Issue Book and Return Book are depicted in Fig 2.18 and Fig 2.19, respectively.  

 
Fig. 2.18: Second Level DFD for Issue Book 

 
 
 
 



Software Engineering | 57 

 
 

 
Fig. 2.19: Second Level DFD for Return Book 

The specification of each of the functions is a process description. Figure 2.20 gives the process 
description of a few functions of the given scenario. 
Function name Verify Book Availability 
Input Title, Author, Edition 
Output Book Availability Status 
Logic 1. Query Book data store to check whether the book with  

    Title, Author and Edition is available in the library 
2. If the book is available, check whether Quantity on hand is  
    not zero 
3. If the above two conditions are satisfied, then the search for  
    given book is  Successful 

 
Function name Verify Member 
Input Member Id 
Pre- condition Verify Book Availability function returns true 
Output Member eligibility status 
Logic 1. Query Member data store to check whether Member id  

    matches 
2. If member is valid, check for the number of books already  
    issued based on type of member 
3. If the above two conditions are satisfied, member is eligible  
    for issue of books 

Fig. 2.20: Process Decription of few processes of LIS 
 
Similarly, the process description of each of the other processes is documented. The Inputs and 
outputs from the process description are recorded in the data dictionary, which includes type, range, 
scope of the datum, etc.  
 



58 | Requirements Engineering 

 

2.4 SOFTWARE REQUIREMENTS SPECIFICATION(SRS) 
Software requirements specification is a document that describes a particular product, software, 
or program that performs a set of functionalities in a specific environment.  
SRS helps in documenting the functional and non-functional requirements along with detailed 
specifications and interfaces. Finally, it helps check whether the system developed meets all the 
requirements stated in an SRS. The benefit of SRS is that the requirements collected become 
complete, consistent, unambiguous, verifiable, traceable with further development steps, and can 
be modified whenever needed.  
SRS is generally required for large-scale projects and safety-critical systems that need plan-driven 
approaches. However, for Small and Medium Size projects that may use an agile approach, a 
detailed SRS is not required.  
According to IEEE recommended practice of Software Requirements Specification, an SRS is 
divided into four sections. The template for SRS is given below. 
 

1. INTRODUCTION 
1.1 Purpose 
1.2 Scope 
1.3 Definitions, Acronyms, Abbreviations 
1.4 References 
1.5 Overall Description 

 
2. OVERALL DESCRIPTION 

2.1 Product perspective 
2.2 Product functions 
2.3 User characteristics 
2.4 User constraints 
2.5 Assumptions & dependencies 
2.6 Apportioning requirements 

 
3. SPECIFIC REQUIREMENTS 

3.1 Interface requirements 
3.1.1 External Interface 
3.1.2 Hardware Interface  
3.1.3 Software Interface 
3.1.4 Communication Interface 

3.2 Functional requirements 
3.2.1 Use case model / Information Flows 
3.2.2 Use Case Specifications/ Process description 
3.2.3 Analysis Classes/Data Dictionary 

3.3 Performance requirements 



Software Engineering | 59 

 
 

3.4 Logical database requirements 
3.5 Design Constraints 
3.6 Software System attributes 

3.6.1 Reliability 
3.6.2 Availability 
3.6.3 Security 
3.6.4 Maintainability 
3.6.5 Portability 

 
4. SUPPORTING INFORMATION 

 
The first section is the Introduction section of SRS. The purpose specifies the intentions and target 
audience of the system. It is to be explicitly stated why the system is being developed and who 
will be using the system. The scope specifies the goals, objectives, and capabilities of the system. 
Definitions, acronyms, and abbreviations used need to be documented in this section. References 
used to write SRS is to be included. The overview section specifies the organization of SRS and 
the description of the remaining parts of SRS. 
 
The overall description section specifies the factors that affect the system and its requirements. 
The product perspective section specifies whether the product being developed is an independent 
or a part of a larger system. A block diagram showing system’s major parts, interfaces and their 
connections is preferred. The product functions section lists the primary functional requirements 
of the system. A list of use cases or processes of the system may be listed with a description. The 
user characteristics section describes the characteristics of intended users, including educational 
qualification and technical knowledge required to use the system. The constraints section 
specifies the conditions that developers need to incorporate. They may also include regulatory 
policies, standards etc. The assumptions and dependencies upon which the system will be 
developed have to be stated in this section. Some of the requirements that can be delayed for 
future can be documented in the apportioning requirements section.  
 
The detailed specifications are given in the “Specific Requirements” section of SRS. The 
Interface requirements section specifies all the interfaces of the system in detail. The external 
interface section gives a description of all inputs and outputs of the system. This includes the 
general characteristics and format of the user interfaces and reports. The hardware interface 
section specifies the characteristics of the system’s hardware components. The software interface 
section documents the other software’s, database’s, etc. This includes the name of the the 
software, version number, source, etc. The communication interface section specifies various 
interfaces required for communication. This includes LAN, internet, etc. 
The functional requirements section details the functionalities listed in the product functions 
section. If the object-oriented analysis approach is followed, then the use case model, 



60 | Requirements Engineering 

 

specification of use cases, and analysis classes are listed. In the case of structured analysis, the 
data flow diagram, process description, and data dictionary has to be specified.  
 
The desired performance requirements of the system can be specified in the performance 
requirements section. The logical database requirements specify the list of required tables and 
their access mechanisms. The design constraints specify any hardware limitations, complaince to 
certain desired standards etc. The system attributes list the desired non-functional characteristics 
of the system. The supporting information section lists appendixes (if any). 
 

2.5 REQUIREMENTS VALIDATION 
 

Requirements validation assesses whether the requiremenets specified are the same as the 
stakeholders needs. The requirements validation phase helps minimize the rework that may arise 
due to the communication gap between the stakeholders and requirements engineers. There may 
be a need to modify the entire requirement specification document. However, the cost of fixing 
these anomalies is much lesser compared to being identified later in the development stage.   
Several checks are done on the requirements specification document in the requirements 
validation phase. Some of these checks are also done during the requirements analysis phase. 
However, in the requirements validation stage, the checks are done on the detailed specification 
document. This includes checking for consistency, completeness, and unambiguity in the detailed 
specification. One requirement should not conflict with the other. The requirements document is 
expected to capture all the desired functionalities of the system.  It should also be checked whether 
the requirements conform to the standards or policies in the problem domain. Several techniques, 
such as requirements reviews and prototyping are used for requirements validation. 

 

2.5.1 Requirements Review 
 

A team involving all stakeholders will review the requirement specification document in the 
requirements review. The goal of this review is to identify issues in the requirements 
specification. The team members review the specification document and check for completeness, 
consistency, ambiguity, understandability, conformance to standards, traceability etc. The 
stakeholders are given a check list of the items to be reviewed in the specification document for 
feedback. Based on the problems reported during the review, the SRS is revised and again 
submitted for review. This process is repeated till an operational requirement specification 
document is ready. However this activity need to be planned so that it doesnt effect the product 
delivery timeline.  

 
 
 
 



Software Engineering | 61 

 
 

2.5.2 Prototyping 
 

In the prototype technique, a working system model is made, which is reviewed by end users of 
the system. The end users or customers will check whether the model meets their expectations. 
Accordingly, feedback is given, which is incorporated into the revised prototype. Subsequently, 
the SRS is updated. Once the operational prototype is accepted, the design phase can start. 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



62 | Requirements Engineering 

 

UNIT SUMMARY  
 

 Requirements Engineering Activities 
 

 Requirements Elicitation Techniques 
o Interviews 
o Questionnaire 
o Record view 
o Ethnography 

 

 Software Requirements 
o User and System Requirements 
o Functional and Non-functional requirements 

 
 Requirements Analysis and Specification 

o Object Oriented Analysis 
o Structured System Analysis 
o Case Studies 

 

 Software Requirements Specification (SRS) 
 

 Requirements Validation 
o Requirements Review 
o Prototyping 

 

 

 
 

 

 
 
 
 
 
 
 
 
 
 



Software Engineering | 63 

 
 

 

EXERCISES 
 

Multiple Choice Questions 
  

2.1 The requirements elicitation technique that is used when the requirements have to be collected from  
many stakeholders is 

(a) Interview  (b) Questionnaire (c) Record view   (d) Observation 
 

2.2 The desired quality characteristics of a system is a__________ requirement  
(a) Functional  (b) System  (c) Non-functional (d) Developer 
 

2.3 The functional requirements are captured in  
 (a) Use case   (b) Class  (c) CRC   (d) System 
 
2.4  The analysis classes can be generated using a CRC Method. CRC Stands for 

(a) Class Reasoning Collaboration 
(b) Cyclic Redundancy Check 
(c) Class Relationship Class 
(d) Class Responsibility Collaboration 
 

2.5 If the change in the specification of a use case-A affects the specification of the use case-B, then it 
is represented using the following relationship 

(a) Unidirectional Association  (b) Dependency  
(c) Bi-directional Association   (d) Reusability 
 

2.6 If an application is planned to be developed using a C language, which of the following paradigm 
is preferred for modeling the system? 

(a) OOAD      (b) SSAD  
(c) Both OOAD & SSAD     (d) UML 
 

2.7 In one of the following levels of DFD the entire system is represented as an abstract process 
(a) Context Level (b) First Level  (c) Second Level  (d) Third Level 
 

2.8 The DFD that specifies high-level functional requirements a sub-processes is a _____ level DFD 
(a) Context     (b) First  
(c) Second    (d) Third 



64 | Requirements Engineering 

 

2.9 One of the following is not a requirements validation technique  
(a) Interviews    (b)  Requirements Review 
(c) Prototyping    (d) Consistency Checks 
 

2.10 One of the sections of SRS lists a set of requirements that can be considered later 
 (a) Product Perspective     (b) Product Functions   
 (c) Use Characteristics    (d) Apportioning requirements 
 

Answers of Multiple Choice Questions 
2.1 (b), 2.2(c), 2.3(a), 2.4(d), 2.5(b), 2.6(b), 2.7(a), 2.8 (b), 2.9(a), 2.10 (d) 

 

Short and Long Answer Type Questions  
 
2.1 What is requirements engineering? What are the various artifacts of requirements engineering  
2.2 Explain why ian nterview or questionnaire alone may not be sufficient to collect requirements  
      from stakeholders. 
2.3 What are the consequences of not properly understanding the requirements of a stakeholder? 
2.4 Differentiate between (i) User and System requirements  (ii) Functional and Non-functional  
       requirements. 
2.5 When functional requirements represent all desired features of the system, then why the non- 
       function requirements are needed? 
2.6 What is object-oriented analysis? Which systems are expected to use this approach 
2.7 What is structured system analysis? Which types of systems have to be analyzed using structured  
         system analysis and why 
2.8 What is Software Requirements Specification (SRS)? Why is it needed 
2.9 Explain why a detailed SRS is not required for the systems following agile methodology 
2.10 What is requirements validation? What are the consequences of avoiding requirements validation 
2.11 List the tests that are carried out during requirements validation.  
2.12 Differentiate between DFD and a flow chart. 
 
 
 
 
 



Software Engineering | 65 

 
 

PRACTICAL  
 
2.1 Collect requirements from stakeholders for any automation requirement in your institution. 
 
2.2 Identify the target environment in which the application has to be developed and use the          
      appropriate analysis paradigms (Object-oriented or structued) to model the following systems.  

(a) Banking System (b) Railway reservation System (c) Online Shopping System 
 
2.3 Develop Software Requirements Specification (SRS) document for (a) Railway reservation System 

(b) Online Shopping System. 
 
2.4 Model any project using the appropriate analysis paradigms and write the detailed SRS of the same.  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



66 | Requirements Engineering 

 

KNOW MORE  
 

Requirements engineering is a systematic approach to collecting, analyzing, specifying, and 
documenting the system’s requirements. Once the system is feasible to develop, the requirements 
collection begins. The mechanism for requirements collection is said to be the requirements 
elicitation technique. The requirements elicitation techniques are Interviews, Questionnaires, 
Record view, Observation, etc. The requirements can also be collected using scenarios and even 
by a requirements document submitted by the customer. This is also referred to as a system study.  
To better understand the system, it is to be modelled. A model simplifies reality and connects to 
reality. Through modeling, one can visualize the system. Based on the target environment, the 
modeling paradigm can be selected.  This includes object-oriented and structured paradigms. If 
it is planned to realize the system in an object-oriented or object-based programming language, 
object oriented analysis approach is to be followed. If the system is planned to be developed in 
procedural languages, then the structured analysis approach is used.  
The artifacts of the object oriented anlaysis approach include the use case model, use case 
specification, and Analysis Classes. The use case specification can also be represented visually 
using an activity diagram. An activity diagram depicts the sequence of activities or actions of a 
given use case. The activity diagram resembles a flow chart. However, the activity diagrams can 
also include synchronization of activities. Several scenarios can be visualized using an activity 
diagram. 
The artifacts of structured analysis approach include a data flow diagram, process description, 
and data dictionary. The object-oriented analysis approach is a bottom-up approach, whereas the 
structured approach is a top- down approach. In structured analysis, the system is initially viewed 
as a single process. Later, it is decomposed into hierarchy of processes until we reach simple 
functions that can be understood and later realized.  
Apart from the functional requirements, the system’s desired quality characteristics must be 
defined. Each system has its requirement of quality. These quality parameters have to be tested 
after testing the system’s functionality  
In order to ensure that the requirements are complete, consistent or unambiguous, it is required 
to write software requirements specification, which has to be validated. There are several 
requirements validation techniques to verify that the requirements collected are as per the 
customer’s needs. Several techniques are used for requirements validation. This includes 
requirements review and prototyping. 
The test cases can be generated from the artifacts of the analysis and from the specification 
document.  
 
 
 
 
 
 



Software Engineering | 67 

 
 

REFERENCES AND SUGGESTED READINGS  
 

 Sommerville, I. (2016) Software Engineering. 10th Edition, Pearson Education Limited, 
Boston 
 

 Roger S. Pressman (2010) Software Engineering: A Practitioner's Approach, McGraw-Hill 
 

 Rajib Mall (2018), Fundamentals of Software Engineering, 5th Edition, PHI Learning Private 
Limited. 
 

 Pankaj Jalote (2010), Software Engineering: A Precise Approach, Wiley-India 
 

 Grady Booch, James Rumbaugh, Ivar Jacobson (2017), The Unified Modeling Language 
User Guide, 2nd Edition, Pearson India Education Services Pvt. Ltd. 
 

 IEEE Recommended Practice for Software Requirements Specifications (830-1993/1998) 
 

 
Dynamic QR Code for Further Reading  

 
 
 



Software Engineering | 68 

 

 
 

d 

 

 

 

 

 

UNIT SPECIFICS  

This unit discusses the following aspects: 

 Design Concepts; 
 Software Architecture;  
 Architectural Styles; 
 Basic User Interface Design;  
 Object Oriented Design;  
 Structured System Design; 
 Coding principles 

The practical applications of the topics are discussed for generating further curiosity and creativity 
as well as improving problem solving capacity.  

      Besides giving multiple choice questions as well as questions of short and long answer types 
marked in two categories following lower and higher order of Bloom’s taxonomy, assignments, a 
list of references and suggested readings are given in the unit so that one can go through them for 
practice. It is important to note that for getting more information on various topics of interest some 
QR codes have been provided in different sections which can be scanned for relevant supportive 
knowledge. 

      After the related practical, based on the content, there is a “Know More” section. This section 
has been carefully designed so that the supplementary information provided in this part becomes 
beneficial for the users of the book. This section mainly highlights the initial activity, examples of 
some interesting facts, analogy, history of the development of the subject focusing the salient 
observations and finding, timelines starting from the development of the concerned topics up to the 
recent time, applications of the subject matter for our day-to-day real life or/and industrial 
applications on variety of aspects, case study related to environmental, sustainability, social and 
ethical issues whichever applicable, and finally inquisitiveness and curiosity topics of the unit. 

 

3           Software Design           



Software Engineering | 69 

 
 

 

 

RATIONALE  

Software design is the process of finding solutions to the problem stated by the customer. The input 
to the software design is the software requirements specification(SRS). The software 
Requirement specification specifies the expected functionalities and features of the system, 
and the software design translates the customer’s requirements into a suitable form that 
helps the programmer to develop a source that can be later tested and deployed.  

The challenge for the designers is to transform the requirements into a suitable design that helps 
implement the system. This is possible by following a systematic process. The software design 
process consists of a set of principles and practices that helps the designers to model the 
solution so that the product is developed and deployed as per the stakeholder’s expectations.  

Software design is classified into two types, high-level and the detailed design. The artifact of the 
high-level design is the software architecture which models the system’s structure. The parts 
of the system and their connectors have to be identified and connected. The system may be 
built on the available patterns called architectural styles. The software architecture is 
decided based on the desired quality characteristics of the system.  

The system can be decomposed into modules in the detailed design, and the interfaces to access 
these modules are also designed. The user interfaces that stakeholders use to access system’s 
services are designed. The detailed design also includes the algorithm and data structure 
design.  

A structured-system design or object-oriented designe is used depending on the target environment 
in which the system will be deployed. Once the design is ready, it can be converted to the 
source code. The source code should follow certain principles, which include simplicity, 
readability, modifiability, interoperability etc.  

This unit helps students to understand the software design process. This includes architectural 
design, user-interface design, and object-oriented design. This unit also presents the coding 
principles that help in developing quality products.  

       

PRE-REQUISITES  

Computer Programming (Diploma Semester-III) 
Scripting Languages (Diploma Semester-III) 
 
 
 



70 | Software Design 

 

UNIT OUTCOMES  

List of outcomes of this unit is as follows: 
U3-O1: Understand the software design concepts 
U3-O2:  Understand the software architecture and architectural styles 
U3-O3: Understand User Interface Design principles 
U3-O4: Understand object-oriented and structured design paradigms. 
U3-O5:  Understand the Coding Principles  
 

Unit-3 
Outcomes 

EXPECTED MAPPING WITH COURSE OUTCOMES 
(1- Weak Correlation; 2- Medium correlation; 3- Strong Correlation) 
CO-1 CO-2 CO-3 CO-4 CO-5 

U3-O1 2 1 3 2 2 
U3-O2 2 1 3 3 2 
U3-O3 2 1 2 3 2 
U3-O4 2 1 3 2 2 
U3-05 2 1 2 3 2 

 

  

 
3.1 DESIGN PRINCIPLES 

     

Software design is a process of defining the structural components, the interfaces, and the detailed 
design of the system. During the design phase, the system’s structure is identified, and the 
functional requirements stated by the customer are realized. Hence, the design is a critical process. 
If the errors go unnoticed, it becomes difficult to correct them. Therefore, a specific set of 
principles must be followed to design a system. The inability to follow the design principles 
results in a system that is complex and difficult to maintain. To evaluate the design, the following 
properties have to be satisfied. 

 Verifiable     : To check whether each requirement stated is designed 
 Efficient       : The system uses optimal resources in a better way. An efficient system  

       consumes fewer resources. 
 Simple     : The design should be easy to understand. 
 Maintainable: The design should be modifiable; that is, any future change requests  

                        should be incorporated 
 Traceable     : Each  design construct should be tracked with the requirements stated. 

 
 



Software Engineering | 71 

 
 

3.1.1 Problem Decomposition and Hierarchy 
 

Large problems are often difficult to solve as they are complex. The complexity can be reduced 
if it is divided into sub-problems using the divide and conquer strategy. The design goal is to 
divide the problem into manageable sub-problems that can be realized effectively. A complex 
system can be partitioned into several components that can be further decomposed into any level 
till the parts are easy to understand and model. The partitioning or decomposing can stop once 
the parts are simple enough to be realized. The designer has to generally make a judgment as to 
when to stop partitioning.  
 
The decomposition of the problem into several subproblems results in problem partitioning that 
can be represented as a hierarchy of components. The simpler components be solved and 
aggregated to implement a sub-problem.  For example, if the function “f” is complex, it can be 
divided into sub-functions (f1 and f2). The functions f1 and f2 can then be aggregated to realize 
the function “f”. Each component at the lowest level of the hierarchy is easy to understand, test, 
and modify. 
 
 

3.1.2 Abstraction 
Abstraction is the most critical part of the design process and is essential for problem 
decomposition. It is a tool that that allows the designer to consider components at the abstract 
level where the underlying details are not be specified.  
 
To start the design any system, it is imperative to define an abstract component, which may not 
specify the inner level details at the initial level to understand the problem well.  A single level 
of abstraction is generally sufficient for simple problems. However, for complex problems, there 
can be various levels of abstraction.  
 
Generally, there are two types of abstraction mechanisms used in software systems, the functional 
abstraction and the data abstraction. In the functional abstraction, the problem is partitioned into 
various functions. The decomposition of the problem is in terms of functional modules of system 
that specify the functionalities without specifying the implementation details. Functional 
abstraction is the basis for structured design. 
 
In data abstraction, a system is visualized as a set of real-time objects, and each object provides 
specific services.  In data abstraction, the internals of objects are hidden, and only the services of 
the object are visible. Data abstraction forms the basis of the object oriented design.  
 
 
 
 
 



72 | Software Design 

 

3.1.3 Modularity 
   The modular system consists of well-defined, manageable components or units that interact with 

each other through well-defined interfaces. The system should be partitioned into modules in such 
a way that each such division is discrete, which can be implemented and well maintained.  

 The following set of principles can be followed to achieve better modularity. 
 Each module is well-defined and can be used by any other application (reusability). 
 A module should be separately compiled and stored in a library. 
 Modules can call other modules. 
 Modules should be simple so that it is easier to understand and maintain. 

 
Effective modularity allows the system to divide it into various parts, each being developed by 
separate development teams.  Further, it also helps to track the design and development progress. 
It also helps in testing the individual parts of the system.  
 
However, If the modularisation is not done correctly, it may lead to several problems. This 
includes increased intermodular communication, and problems with integration. 
 

3.2 MODULAR DESIGN 
 

The modular design helps reduce the system's complexity and allows the development of various 
parts of the systems parallelly, as the modules are generally discrete. In modular design, the 
modules are arranged hierarchically. 

 
Fig. 3.1: Layered design 

 
The first level of the hierarchy includes the names of the modules, and the lower level layers of 
the hierarchy represent the functions of the modules. Separate teams can implement these 
modules. In Figure 3.1, the system “S” is divided into two modules, namely “M1” and “M2” 
respectively. Each module is further partitioned into respective functions. If the functions are 



Software Engineering | 73 

 
 

complex, they can be further decomposed. As the modules in the given figure are discrete, these 
modules can be implemented parallelly by separate teams. The layered design helps in 
understanding the system easily. Each module can be tested and deployed, and if any errors are 
found, they can be debugged with ease. The factors that impact the design of the system are 
coupling and cohesion. A well-designed system is expected to have loose coupling and tight 
cohesion. Such modular systems are simple, modifiable, verifiable, traceable, and reusable. 

 
    3.2.1 Coupling 

Coupling refers to the strength of the relationship between the modules of the system. Two 
modules of a system are said to be tightly coupled, i.e. the relationship between the modules is 
high when the modules are strongly dependent on each other. In tightly coupled systems, the 
modules cannot be separated as one depends on the part of the functionality of the other. Two 
modules that do not depend on each other or interact by passing only the primitive data items are 
said to be loosely coupled. 
 
Coupling is classified into various types based on the strength of the interaction between the 
modules of the system. Figure 3.2 describes five types of coupling arranged in the increasing 
order of the relationship between the modules (loose to tight).  
 

Data Stamp Control Common Content 
Loose                                                                                                                            Tight 
(Most Desirable)                                                                                      (Least Desirable) 

Fig. 3.2: Coupling types 
 

 Data Coupling:  Two modules, A and B, are said to be data coupled if they communicate 
by passing data of elementary type. For example, a data coupling exist between two 
functions f1 and f2 if there is a call to function f2 from function f1 using primitive data 
types. The parameters used in calling f2 can be of the following types: integer, real, 
character, boolean, enumeration, or a pointer.  
 

 Stamp Coupling:  Two modules, A and B, are said to be stamped coupled if they 
communicate using composite data structures such as objects, structures, and unions. 
 

 Control Coupling: Control coupling is said to exist between two modules if the data in 
one module, directs the instruction execution in another. This usually happens when the 
flag that is set in one module is used for the execution of instructions in the other module. 
In other words, the decision taken in module A is used for the execution of instructions 
in module B.  
 



74 | Software Design 

 

 Common Coupling: Common coupling exists between two modules when they share 
the global data items. The changes to the global data item will affect all the modules 
using it. Determining which module is responsible for the changes made to the global 
data item will be challenging.  
 

 Content Coupling: Content coupling is said to exist between two modules when one 
module modifies the internal working of another module. For example, in C++, a friend 
class can access the private members of a class.  
 

   3.2.2 Cohesion 
Cohesion refers to the strength of the relationship between the module elements. The elements or 
functions of modules are said to be tightly cohesive when the relationship between the functions 
of module is high. In Figure 3.1, there should be more interaction between F1 and F2 to realize 
the functionality of Module M1. The module’s functions have to cooperate to achieve the 
objective of the module.  
 
Cohesion is classified into various types, and cohesion’s strength increases from coincidental 
cohesion to functional cohesion. Figure 3.3 describes seven types of cohesion  
 

Coincidental Logical Temporal Procedural Communicational Sequential Functional 
Loose                                                                                                                                                 Tight 
(Least Desirable)                                                                                                           (Most Desirable) 

Fig. 3.3: Cohesion types 
 

 Coincidental cohesion:  Coincidental cohesion exists when there is no or little 
relationship between the module’s functions. The module's functions perform certain 
operations unrelated to the operations of the other function within the same module.  
  

 Logical cohesion: If the elements of the modules perform similar operations, then the 
module is said to be logically cohesive. Similar operations across the functions of a 
module include data input, output, exceptional handling, etc.  
 

 Temporal cohesion: A module is said to exhibit temporal cohesion if the functions of 
the module are executed at a particular time. For example, the booting of a computer 
initiates execution of several functions simultaneously.  
 

 Procedural cohesion:  When the set of functions of a module are executed in a specific 
order, then the module is said to possess procedural cohesion. The functions are executed 
in a sequence but may not be related, or they may operate on different data. 
 



Software Engineering | 75 

 
 

 Communicational cohesion: A module is said to exhibit communicational cohesion if 
all functions of a module update the same data structure. For example, the push, pop, and 
peep operations are performed on a stack or a queue data structure. 
 

 Sequential cohesion: Sequential cohesion exists between the functions of a module 
when these functions are executed in an order such that the output of one function 
becomes the input to another.  For example, checking availability, placing an order, and 
payment are the functionalities of an e-commerce application which has to be executed 
in the same sequence. The output of one becomes the input of the other.  
 

 Functional cohesion: When different functions of a module interact and coordinate to 
execute a task, the module is said to be functionally cohesive. 
 
 

3.3 SOFTWARE ARCHITECTURE 
 

The software architecture of a system represents the organization of systems consisting of a set 
of components and the interconnection between them. The architecture design is concerned with 
understanding how the overall system is organized. Architectural design is the first step in the 
software design process.  
The software architecture generally consists of the following elements: 

 Set of components that include database, libraries, or computational units, which are 
responsbile for implementing the system’s services. 

 Set of interfaces that connects various components for communication and coordination 
across the system. 

 
The input to the architecture design process is the requirements specification, and the output of 
the architectural design is a well-defined software architecture. The proper choice of software 
architecture is needed as it affects the system’s performance, maintainability, and robustness. The 
architectural design depends on the type of system being developed, the requirements of the 
customer, and the architect’s experience.  The desired non-functional requirements of the system 
characterize the architecture of the system.  
 
 
Generally, each component implements the functional requirements given by the customer. But 
the non-functional characteristics are realized by the system’s architecture. The architecture of 
the system is decided based on the desired non-functional characteristics. As these characteristics 
vary from one system to another, there can be multiple structures for the same system.  
 
Suppose a system that takes student’s feedback on teaching-learning-evaluation has to be 



76 | Software Design 

 

developed. The student gives responses to various questions asked in the feedback.  The 
architecture of the feedback system consists of three components: client, server, and database, as 
depicted in Figure 3.4. 
 

 
 

Fig. 3.4: Feedback system architecture 
 

The client component is used to display the feedback form to the student. The student can give 
the responses to the questions and submit the same. The second component processes the data 
submitted by the student, does the required validation, and stores the result into the third 
component which is a database. These three components need to be connected.  As the student 
submits the feedback, it is to be received by server for processing and the response has to be 
recorded in database. There is a need for communication channel between these components. 

 
The components of this system are clients, server, and database. The clients can request for certain 
service to the server. The request is sent using HTTP to the server. The server, in turn, connects 
to the database using jdbc/odbc connectivity. After retrieving the required information from the 
database, the server returns the response to the client.  The proposed student feedback architecture 
has yet to consider many of the quality characteristics of the system. For example, a student can 
give feedback any number of times for the same course and same semester, as there is no 
mechanism to authenticate the student. Another component namely authentication server, may be 
required in such a case. Similarly, the server or database may fail as the architecture did not 
consider the availability characterstics. We may require a backup server and a replicated database 
copy to achieve availability. Hence there is a need to consider the desired quality characteristics 
of the system, including performance, security, availability, reliability, maintainability, etc., and 
accordingly propose the software architecture. 
 
If security is the desired non-functional or critical requirement, the layered structure may be used 
where the most critical elements are placed in the inner layer. Each layer may contain access to 
certain services and data. It is necessary that the producers of the data should be separated from 
the consumers of data, and shared data has to be avoided for easy maintenance.  
 
If maintainability is the desired quality characteristic, the fine-grained components must be self-
contained to adapt quickly. Further, the data producer should be separated from the consumers of 
data, and shared data has to be avoided for such components as maintenance becomes 
problematic.  
 
If performance is the desired non-functional requirement, then the operations that affect the 
system's performance must be included in small components, which must be localized and should 



Software Engineering | 77 

 
 

not be distributed. The architects use microservices to achieve the desired performance of the 
system. 

 

3.4 ARCHITECTURAL STYLES 
 

An architectural style describes principles, characteristics, and features that provide an abstract 
framework for a specific set of systems. This promotes design reuse by providing solutions to 
common problems called patterns. The basic idea behind architectural patterns is to describe and 
reuse the structures of software systems that have been adopted in similar domains.  
For example, developing a portal for online shopping or online admission system, railway 
reservation system, etc., requires one to develop a web-based system. An architecture for a web-
based system can be reused for all such systems.  
Some of the most commonly used architectural styles are model-view-controller, layered, 
repository, client-server, and pipe and filter architectures. 

 

    3.4.1 Model-View-Controller (MVC) Architecture 
 
The Model-View-Controller (MVC) architecture is divided into three components: model, view, 
and controller, which interact. This architecture is used when there is a need to separate the user 
interfaces from the system and data. The model component manages the data and the operations 
on it. The view component defines user interfaces that the user uses to give inputs to the system. 
The control component interfaces between the view, and the model components. It generally 
implements the business logic to realize the local validations based on the events at the view 
level, which includes button press, mouse click, mouse move, etc. The MVC architecture is 
depicted in Figure 3.5. 

 
Fig. 3.5: Model-View-Controller architecture 

The Model-View-Controller (MVC) architecture provides an abstract view of the system. The 
view components define how the data is displayed to the user. The controller updates the model 
or the view based on the input given by the user. The model defines the data required for a 
particular application, and whenever the state of the data changes it may notify it to the view.  
Considering the feedback system example, the feedback form is displayed on the view 
component. The student fills out the feedback form and submits the same. The controller verifies 
whether any fields are missing. If so, it notifies the student. If the validation is successful, the 



78 | Software Design 

 

information is updated in the database in the model component. The acknowledgment is given 
back to the student at the view level once the feedback is recorded.   
 

    3.4.2 Layered Architecture 
The layered architecture supports the incremental development of the system. Components in the 
layered architecture are organized into a few horizontal layers such that each layer performs a 
specific task. There can be any number of layers based on the given requirement. However, the 
most commonly used layered architecture uses four standard layers. Fig 3.6 represent a generic 
layered architecture with four layers.  
 

 
Fig. 3.6: Generic layered architecture 

 
The lowest layer includes system support services that typically contains Operating system, 
databases, etc. This layer is also known as the database layer. The second layer is the business 
logic layer which contains components with system functionalities. The interface manager is 
responsible for authentication and authorization mechanisms. The topmost layer is the user 
interface layer which could be a browser from where the user interacts. The number of layers is 
arbitrary. Each layer can be further divided into two layers. Some of the layers can also be merged. 
For example, the interface manager and business logic layer can be merged into a middleware 
that provides functional components, user authentication, and authorization. 
The advantage of this architecture is that as the layer is developed, some of the services provided 
by the layer may be available for users. The layer provides services to the layer above it. The 
lowest level represents the core services of the system.  
This architecture is used when the development of the system is spread across teams, and each 
team is responsible for developing the functionality of a layer. Layered architecture is specifically 
used when there is a requirement for multi-level security where the innermost layer will have the 
most critical components.  
 
 
 



Software Engineering | 79 

 
 

 
The advantage of this architecture is that it allows the replacement of a layer as long as the user 
interface is not changed. However, the clear separation of concerns between different layers is 
challenging. 
 

    3.4.3 Repository Architecture 
The repository architecture is also said to be a data-centered, or shared data style architecture. 
There are two components in the repository architecture. One is the central repository, and the 
other one is the data accessor. Fig 3.7 presents the repository architecture. 
 

 
 

Fig. 3.7: Repository architecture 
 
A data repository is a place where the system stores the shared data. This could be in the form of 
files, or databases. The data accessors are client applications that read the data from the repository, 
and process them. If the results of this data have to be shared, then these accessors will put the 
data back in the repository.  Data accessors do not interact directly with each other. However, the 
interaction is only through shared data type through a data repository. 
 
There are two variants of this architecture. In the first case, the repository is active, where once 
the shared data is modified, the accessor components are informed about it. The data accessor 
components are informed about the changes to the shared data. In the second variant, the 
repository is a passive repository, which only provides the storage of this data in the components, 
and the accessors have to access the data as per the requirements. 

 
This architecture is used in current-day systems, where large volumes of information are stored 
for a long time. The data accessors can access the shared data based on their need for making 
decisions, getting insights into the data, etc., depending on their requirements. Each accessor 
could be a separate system that takes this data and makes appropriate decisions for their business. 



80 | Software Design 

 

The disadvantage of this architecture is that, as the shared data is stored in a single repository, 
any failures in this repository may put the system in a dormant state. 

 
    3.4.4 Client-Server Architecture 

 
One of the commonly used architectures is the client-server style architecture, one of the basic 
distributed computing paradigms. There are two components of this architecture:  client and 
server. The client component requests services remotely from any location and device. The server 
component processes the request of the clients by providing the services to the clients. The 
advantage of this architecture is that multiple clients from various locations can access the 
services at any time. The generic client-server architecture is presented in Figure 3.8. 
 

 
Fig. 3.8: Client-Server architecture 

 
The client is a computer program that is used to request the desired service. Servers are software 
components that can run several services that respond to the client's request. The connection 
between the components is possible through a request-reply connector, which requires network 
connectivity. 
 
 Servers are software components that can run several services. Some of these services are 
realized by a set of servers where each is responsible for realizing a part of the service. One could 
be an application server, and another could be a database server. The general form of this 
architecture is n-tier architecture. 
 
 In a three-tier architecture (Fig 3.9), the client requests a service received by the second layer. 
The second layer is said to be a middle layer that contains business logic. In order to realize the 
request, the business layer may have to request the data from the database server. The third layer 
is the database server that maintains the database. The business layer interacts with the database 
server for all data-related queries.  

 
Fig. 3.9: Three-tier architecture 

 
 
 



Software Engineering | 81 

 
 

    3.4.5 Pipe and Filter Architecture 
 
The pipe and filter architecture pattern is used when there is a function transformation between 
the various components of the system. There will be a flow from one competent to another 
component after its transformation in a sequence. These transformations may execute in 
sequential or parallel, and each component can process the data. The generic pipe and filter 
architecture is depicted in Figure 3.10 
 

 
Fig. 3.10: Pipe and Filter architecture 

 
The pipe and filter architecture has an independent component called a filter that performs data 
transmission by taking the input and producing an output that acts as an input to the next filter. 
Pipes serve as connectors between the filters. Data flows in a pipe from one filter to the other. 
This architecture connects components that process a data stream wherein one component is 
connected to another. In Figure 3.10, filter1 and filter2 are connected sequentially, whereas filter3 
and filter4 are in parallel. The pipe is a unit action channel that cannot change the data in any 
manner but merely transmit from one filter to another filter. This architecture is used in data 
processing applications. This could be transactional-based or batch based, where a given input is 
processed in stages. 
 

3.5 USER INTERFACE DESIGN 
 
 The user interface is the means of interaction with the system. The end users interact with the 

system through user interfaces. There is a need to develop these user interfaces systematically to 
realize the system's usability quality characteristics. The quality of the user's experience in 
interacting with the system is usability.  
 
An interface that could be easier to use leads to satisfaction among customers. The system might 
implement all the desired functionalities of the customer. However, as a user interface is badly 
designed, the user may be unable to use the system functionality effectively. Because of its 
importance, the effort required to develop the user interface is high. 



82 | Software Design 

 

Generally, there are two user interfaces, a Command Line Interface (CLI) and a Graphical User 
Interface (GUI). In the command line interface, a command prompt is provided where the user 
enters the commands given to the system. The user needs to remember the usage of commands 
in order to give the request. The command line interface is easier to develop than the graphical 
user interface. The command language interface can be systematically developed using standard 
tools like Lex and YACC. Command line interfaces are generally difficult to learn as the user has 
to memorize the command, and users may make errors in typing those commands.  
  
On the other hand, Graphical user interfaces are easy to use. The Graphical Interface provides a 
simple visual representation that is used to interact with the system. It is also known as a menu-
based interface. In these interfaces, the typing effort is minimal, and the user interacts with the 
system through icons and by selecting several options. The graphical user interface is designed 
based on the customer's knowledge and background. The user should be able to navigate various 
menus and select the appropriate options. Though GUI interfaces are easy to use, the experts may 
find it difficult as they can type commands faster on a command line interface and get the 
computation done quickly. 

 

    3.5.1 User Interface Design Process 
 

The first step is identifying the users' interaction skills with the system. Accordingly, the users 
may be classified into various categories based on their technical knowledge. The UI design may 
differ from one type of user to another as the design may be specific to the type of user. Then the 
tasks that each user category can perform must be specified and elaborated. The devices on which 
these users will be accessing the interfaces and the environmental effects on interfaces have to be 
considered.  
 
In the second step, the objects of the interface design are identified. The tasks are listed sot hat 
the elements of the user interface design to implement the tasks are identified. Error handling and 
help facilities for each task must be listed. This step has to be iterated until all the desired features 
or tasks are captured. 
 
The third step is the interface implementation phase. In this step, the prototype model specifying 
all the scenarios stated based on the user requirements is presented user interface. It consists of 
the creation of windows, menus, forms, scroll bars, messages, commands, etc. This step is iterated 
till the user accepts the prototype.  
 
In the fourth step, once the operational user interface is ready, the user interface is tested to check 
whether all the requirements stated in the software requirements specification are included. In an 
object-oriented paradigm, a user interface generally exists between the actor and a use case. 
Similarly, in the structured paradigm, user interfaces are created between the external entity and 
the process of the system. 
 



Software Engineering | 83 

 
 

   3.5.2 User Interface Design Principles 
  
The following principles are to be followed for a better user interface design: 

 The user interface would be simple so that the user can navigate the interfaces easily. 
 The user must be provided with mechanisms to navigate using a keyboard, mouse, or 

touch screen effectively. There is a need to provide all types of interactions. 
 The user interface is expected to be attractive with proper colors, buttons, etc, such that 

it should be easy to use and visualize.  
 There should be consistency in user interface design across various system interfaces. 
 There should not be aware of the internal technical details of the system. The user only 

interacts with interfaces by giving inputs to the system. 
 Shortcuts to use various objects of the user interface have to be provided wherever 

possible. 
 There is a need to provide a proper help facility so that the user can access the UI 

seamlessly. This may include quick access to help files, tooltip provision, etc. 
 
  
3.6 OBJECT ORIENTED DESIGN 

 
Object-oriented software development is a popular paradigm widely used because of its features. 
It helps develop modularized components that can be easily maintained and reused. An effective 
object-oriented design for a given problem is possible by building several models that are iterated 
to make a design that can be easily translated to the source code. The object-oriented design 
follows a bottom-up approach to realizing the solution to the given problem. 
Unified Modeling Language (UML) is a de facto standard for writing software blueprints for 
object-oriented systems. The model helps in visualizing the system in a better way and in realizing 
the system as per expectations. UML is a language for visualizing, specifying, constructing, and 
documenting. The basic building blocks of UML are things, relationships, and diagrams.  
The deliverables of the object-oriented analysis phase are use case models with specifications and 
analysis classes. In object-oriented design, each use case is realized. A use case realization 
indicates how a use case will be implemented. The realization requires the identification of 
objects and their interactions. 
  
 
 
 
 



84 | Software Design 

 

    3.6.1 Interaction Diagram 
 

An interaction specifies the system's dynamic behavior in which different elements collaborate 
and interact. The primary element of an object-oriented paradigm is an object. An object is a real-
time entity with a state, behavior, and identity.  
The state of an object represents its characteristics or properties. The behavior represents the 
operations that can be performed on the given object. Each object is distinguishable and has an 
identity. An object can have a name (Named object) or be represented as an instance of a class 
(anonymous object). The representation of an object is given in Fig 3.11 

 
Fig. 3.11: Object representation 

 
An interaction diagram is used to model the exchange of messages between the objects of a 
system. There are two types of interaction diagrams: Sequence diagrams and Collaboration 
diagrams.  
A Sequence diagram is an interaction diagram that depicts the time ordering of messages. The 
messages are temporally modeled. In a sequence diagram, the objects are arranged on X-axis, and 
Y-axis represents the time dimension. The general format of the sequence diagram is given in 
Fig. 3.12 

.  
Fig. 3.12: Sequence diagram 

 



Software Engineering | 85 

 
 

One object communicates with the other by passing messages. Communication can be passing 
messages between objects, self-messages, returning messages, and creating and destroying the 
objects. In Fig 3.12, the objects Candidate, Course, and Fee are represented along the X-axis. The 
objects communicate by passing messages. There can be a self message which is generally used 
for local validation. Each object has a lifeline (dotted line). After the expiry of the lifeline, the 
object is automatically destroyed. The objects can also be destroyed explicitly before the expiry 
of the lifeline. This is possible by sending a destroy message (X). The focus of control represents 
the time required to execute the message. The Candidate, Course, and Fee objects are created at 
the same time. However, the Object Student is dynamically created by executing a create 
message. 
Each scenario of the use case can be modeled using the sequence diagrams. Firstly, various 
objects required to realize the use cases are identified, and the sequence diagram is modeled. The 
messages are later transformed into the methods of the respective classes.  
 
A collaboration diagram (also known as a communication diagram) is an interaction diagram that 
depicts structural organization. Unlike sequence diagrams, the collaboration diagram has a direct 
link between the objects. Sequence diagrams and collaboration diagrams are semantically 
equivalent. A given sequence diagram can be converted to a collaboration diagram. The 
equivalent collaboration diagram of the sequence diagram(Fig.3.12) is given in Fig 3.13. 

 
Fig. 3.13: Collaboration diagram 

 
 
In the collaboration diagram, there is a direct link between the objects. However, the object’s life 
line and focus of control is not explicitly stated. The organization of the collaboration diagram is 
a structural organization.  

 
 



86 | Software Design 

 

    3.6.2 Class Diagram 
 

During the analysis phase, the classes were identified using a Noun convention or a CRC card 
method. These classes are designed by identifying the properties and respective methods. Each 
message passed between the objects becomes the method of the class.  
A class diagram represents a static view of the system. It represents a set of classes, interfaces, 
and relationships between them. Class diagrams are used not only for visualizing and specifying 
but also for developing systems. The resultant class diagram can be converted into the source 
code. A generic class diagram is shown in Figure 3.14.  

 
Fig. 3.14: Generic Class diagram 

 
 A class diagram specifies the relationship between the classes. Class relationships can be 

association, generalization, realization, aggregation, and composition. The relationship also 
specifies name, multiplicity, and role. The relationships used in the object-oriented design are 
given in Fig. 3.15 

  
 

 

     
Fig. 3.15: Relationships and their notations 

 

Relationship Notation 
Dependency  
Association 

  
Generalization  
Realization 

 
Aggregation  
Composition 

 



Software Engineering | 87 

 
 

 A dependency relationship exists between two classes when the changes to one class affects the 
other. The association is the structural relationship between two classes. It shows the number of 
instances of a class related to the other. The association can be uni-directional or bidirectional.  

 
Generalization is used to describe the relationship between base and derived classes. The derived 
class inherits the properties and behavior of the base class. It is also known as IS-A relationship 
(OR- relationship). 

 
Realization is a relationship where one thing specifies a contract, and the other realizes it. The 
relationship between an interface and a class or component is realization, as a class or a 
component implements the interface. 

 
Aggregation is a type of association relationship which is a whole-part or "And" relationship. The 
parts can exist independently, but together may represent another class. For example, Computer 
is a Class that can be aggregated using Keyboard, Mouse, and CPU classes which form parts of 
the Computer. The parts can exist independently. Composition is a type of association that is a 
whole-part relationship, but the whole and part of the class cannot be separated. If a person 
represents the whole in a composition relationship, its parts could be the Head, leg, and body. If 
the person does not exist, the parts also do not remain. 

 
The multiplicity represents the number of instances of one class relative to the other. There can 
be different variants of multiplicity. It can be one-to-one, one-to-many, and many-to-many with 
optional and mandatory relationships. Additionally, it can be represented in any valid range of 
values. For example, 2..10 represents a minimum of two instances and a maximum of 10 instances 
of the class. The variants of multiplicities are represented in Fig 3.16. 
 
 

Multiplicty Description 
1..1 Only one (mandatory) 
0..* Zero or more (optional) 
1..* One or more (mandatory) 
0..1 Zero or one (optional) 
m..n Atleast m instances at atmost n instances 

Fig. 3.16: Multiplicity variants 
 

    
 
 



88 | Software Design 

 

 
 3.6.3 Case Study: Object Oriented Design 

 
In section 2.3.2, an Indian Bank System is analyzed. The three primary use cases identified are 
Deposit Amount, Withdraw Amount, and Transfer Amount. The specifications of these use cases 
are given, and analysis classes are identified.  
In object-oriented design, each of these use cases is realized. In all three use cases, the actor is 
the Teller. There is a need for user interface design between each actor to a use case. The user 
interfaces are realized as boundary class objects. The classes identified during the analysis phase 
can be at the backend. These are realized as entity class objects. The control class objects realize 
the interaction between boundary and entity class objects. The interaction diagrams model the 
scenarios of the use cases. There can be separate sequence diagrams for each scenario.  
A user interface must be designed for the deposit amount and withdraw amount use case. The 
generic user interface for Deposit amount is given in Fig. 3.17. 
 

 
Fig. 3.17: Deposit Amount User Interface 

 
It is clear from the user case specification of Deposit Amount that the required fields in the UI 
for Deposit form are Account number and Amount. The local validations must be performed on 
the Account number (number of digits) and valid Amount.  
 
In the sequence diagrams for the scenarios of a use case, the first object is that of the user interface, 
which is also said to be a boundary class object. Once the form is filled, it is submitted to the 
controller object. This acts as an interface between the boundary and the entity class objects.  
 



Software Engineering | 89 

 
 

The sequence diagram for the deposit amount is specified in Fig.3.18. The Teller fills out the 
Deposit form and submits it. The local validation can be specified on each text box to check the 
valid account number and Amount, or the validations can be specified on the submit button.  

 
Fig. 3.18: Sequence diagram for Deposit Amount  

 
The Account, Customer, and Transact objects are at the back end (or database). They are entity 
class objects in which the information is stored longer. The methods which are exchanged 
between the objects correspond to the sequence of activities specified in the use case specification 
of the deposit amount.  
Similarly, there will be user interfaces for withdrawal amount and transfer amount. The sequence 
diagram for the withdraw amount is specified in Fig. 3.19. 



90 | Software Design 

 

 
Fig. 3.19: Sequence diagram for Withdraw Amount 

 
The sequence diagram for transfer amount is specified in Fig. 3.20. 

 
Fig. 3.20: Sequence diagram for Tranfer Amount 

 
Each message that is modeled in the sequence diagram becomes the method of the target class. 
For example, in Fig. 3.20, 'verifySourceAccount()' is the message sent from the TranfrCntrlr 
object to the object of Account Class, then 'verifySourceAccount()' becomes the method of the 
Account Class. As sequence diagrams and collaboration diagrams are semantically equivalent, 
one can generate the equivalent collaboration diagrams for the above-specified scenarios.  



Software Engineering | 91 

 
 

 
The data structures and algorithms need to be designed in a detailed design. For each of the class's 
attributes, its type, initial value, range of values, etc., need to be modeled. Similarly, the return 
type, parameter list, parameter types, etc, have to be modeled for the class methods. Further, all 
the user interfaces can be packaged as a client. The controller objects can be packaged into a 
middleware with business logic, and the entity objects can be packaged into a server, thus 
facilitating a three-tier architecture. The class diagram involving the entity classes in the above 
scenario is given in Fig 3.21. 

 
Fig. 3.21: Class diagram for the Banking System 

 
 
3.7 STRUCTURED SYSTEM DESIGN 

Structured System Design (SSD) aims to conceptualize a problem into interacting modules. Each 
module has a clear set of sub-modules or functions that interact to realize its objective. A system 
is said to be structured if it possesses loose coupling and tight cohesion. The structured system or 
function-oriented design aims to realize the solutions suitable for procedural languages. 
 
The structured system design aims to transform the artifacts of structured analysis, a Data Flow 
Diagram (DFD), into a structure chart. Transform Analysis and Transaction Analysis are the two 
methods used to transform a DFD into a structure chart.     
 
 
 



92 | Software Design 

 

    3.7.1 Structue Chart 
 
The artifact of the structured or function-oriented design is a structure chart. A structure is a 
graphical representation of modules of a system and its relationship. Each module may contain 
several functions. The notations used to draw a structure chart are represented in Fig 3.22. 
 

Name Notation 
Module (User-defined) 

 
Module (System-defined) 

 
Call 

 
Data Couple 

 
Control Couple 

 
Decision 

 
Iteration 

 
Fig. 3.22: Notations used in structure chart 

 
A user-defined module is represented in a rectangle with the module's name inside it. The system-
defined modules are represented in a double rectangle. A module can invoke or call another 
module. An arrow represents this. When a module calls another module, it may either pass data 
or control information between them. This is represented by data and control couple, respectively.  
 
 
 
 



Software Engineering | 93 

 
 

The decision taken in a given module may invoke other sub-modules, a decision box at the bottom 
of the rectangle represents this. The entire module may have to be iterated several times. A self-
arrow to the module represents this.  
 

     3.7.2 Transform Analysis 
 
One of the methods to convert a data flow diagram into a structure chart is transform analysis. 
The input, output, and transformation processes are identified and converted to a structure chart 
in tranform analysis. The procedure for transform analysis is as follows: 

 Refine the data flow diagram 
 
The data flow diagram drawn during requirements analysis differs from the one drawn 
in the structured design. A data flow diagram is modeled in requirements analysis to 
understand the problem domain. During structured design, the data flow diagram shows 
the primary functions of the software. Transform analysis is used in simple applications 
where given input(s) are processed, and consequently, the output is generated.  
The refined data flow diagram of section 2.3.4 is represented in Fig. 3.23. 
 
 

 
Fig. 3.23: DFD of LIS 

 
 Identify the input and output boundaries in the data flow diagram. 

 
In this step, the goal is to separate the inputs, transforms, and outputs. The input area of 
the DFD includes all the processes that transform the input into the logical form. The 
input area is called an afferent branch. Similarly, the output area of DFD may convert 
the output area to physical form. The output area is also known as the efferent branch. 
The other processes in DFD perform the core transformations (also known as central 
transforms). The DFD with input and output boundaries is represented in Fig. 3.24. 
 

 
Fig. 3.24: DFD of LIS specifying the afferent and efferent branches 



94 | Software Design 

 

 
 

 First-level factoring 
Once the input and output boundaries are identified, the structure chart has sub-ordinate 
modules representing functional components of afferent, efferent, and transform 
processes represented in Fig 3.25. 
 

 
Fig. 3.25: Structure chart of LIS with first-level factoring 

 
 

 Factoring of afferent, efferent and tranform branches. 
In this step, the structure chart is refined by adding sub-functions to the first-level 
modules. All the processes in the afferent area become the sub-functions of the afferent 
module. Similarly, the processes in the efferent area become sub-functions of the efferent 
module, and the remaining processes become the sub-functions of the transform module. 
Furthermore, the data and control information flowing between the modules is modeled. 
The resultant structure chart is given in Fig 3.26. 
 



Software Engineering | 95 

 
 

 
 

Fig. 3.26: Structure chart of LIS  
 

The structure chart can be easily transformed into the target procedural language. Enter_ 
Book_details and Enter_Member_details are the functions used for taking inputs from the users 
and storing the same in files. Get_Member_Details will be a user-defined header file containing 
functions Enter_Book_Details and Enter_Member_Details.  
 
Similarly, Verify_Book, Verify_Member, and Process_Book_Transactions are the functions 
implementing the core functionalities of LIS and Process_Book is a  user-defined header file 
containing these functions. Print_Book_Transaction_Details is the function used to generate 
output, and other functions for the generting reports can be a part of the Generate_Report user-
defined header file.  

 
 
 
 
 



96 | Software Design 

 

    3.7.3 Transaction Analysis 
 
Transaction analysis is a method to convert a data flow diagram to a structure chart. It is used 
when the tasks are invoked based on the inputs; generally, these tasks are independent. In 
transaction analysis, each input is used for different computation paths. The general form of the 
data flow diagram for transaction analysis is given in Figure 3.27. 

 
Fig. 3.27: DFD representing transaction analysis  

The transaction centre takes input from the user, and based on the user's choice, the respective 
computation path contains sub-processes used to realize a given functionality. The following 
steps are followed to convert a DFD of transaction analysis into a structure chart.  

 Refine the data flow diagram 
In the first step, the data flow diagram is refined to have a transaction centre and 
corresponding computational paths. The data flow diagram for the Indian Bank scenario 
(section 2.3.2 ) is given in Fig. 3.28. 
 

 
Fig. 3.28: DFD for Banking Transactions  

 



Software Engineering | 97 

 
 

 First level factoring 
The structure chart contains two subordinate modules in first-level factoring: the input 
and the dispatcher. The dispatcher module is used to realize different transaction paths. 
The execution of transaction paths terminates by updating all the master files at the end. 

 Factoring of input and transaction sub-processes. 
In this step, the structure chart is refined by adding sub-functions to the input and 
dispatcher modules. The input module collects the user’s input to identify a particular 
transaction flow. The dispatcher modules pass on other required inputs to perform 
computation, and finally, the master_files are updated. The data and control information 
flowing between the modules is modeled. The resultant structure chart is given in Fig 
3.29. 

 
Fig. 3.29: Structure chart for Banking Transactions  

 



98 | Software Design 

 

 3.8 CODING PRINCIPLES 
 
The goal of the coding phase is to transform the design into the source code of the target 
programming language. The modules and functions identified during the design are converted to 
the source code by implementing appropriate data structures and algorithms. The functions of a 
module are first implemented, and later, the modules are integrated to realize the system's 
functionality. The agile software development approach uses pair programming, where two 
programmers work together to code and test the user stories. 
 
The goal of coding is not only to transform the design into the source code but to develop quality 
programs. The quality of source code is expected to possess the following characteristics: 

 Readability: The code is easy to read 
 Reusability: The parts of the code should be easy to reuse 
 Maintainability: The code should be able to make modifications and add new features 
 Robustness: The code that can handle unexpected inputs 
 Reliable: The code that does not produce dangerous failures. 

 

    3.8.1 Coding standards and guidelines 
 
Coding standards and guidelines play a significant role in achieving the source code quality. The 
standard guidelines to be followed to develop quality code are as follows: 
 

 Naming Conventions: Some of the naming conventions are as follows: 
o Global variables should start with an uppercase letter 
o Local variables should generally be nouns starting with lowercase  
o Constant names should be in uppercase 
o Package names should be in lowercase 
o Methods and functions should be verbs starting with lowercase 
o Avoid long variable names 

 
 Comments: Comments are descriptive statements that help the reader to understand the 

code. For better readability, the comments should be specified for each module or 
function in the code. Each programming language has a comment delimiter that can be 
used to provide the text for better clarity. 
 

 Standard headers: A common header has to be followed for all the modules in the 
program. This may include the name of the module, the author's name, the date on 
which the module is created, the date of the last modification, different functions of the 
module, etc.  

 
 



Software Engineering | 99 

 
 

 Use of Globals: The global variables have to be identified with utmost care and a limit 
to use.  
 

 Coding guidelines 
o The code should be easy to understand. Develop a code that is easy to 

understand. This makes debugging and maintenance difficult. 
o Avoid long functions and methods: A long code is difficult to understand, reuse 

and maintain. Hence a method generally should not exceed 10-15 lines of code. 
o Proper comments are required at least for every block of code. 
o The source code should be properly indented for better understanding, clarity, 

and debugging. 
o Variable names should be meaningful for better understandability. 
o Avoid Go To statements as they make the program unstructured. 
o Properly manage side effects: Changes in global variables may make 

understanding the code complex. Further, it will be not be easy to maintain. 
o Avoid complex conditional expressions. 

 
Code review starts once a module is successfully compiled. Code reviews help eliminate coding 
errors and aim to produce high-quality code. Code review is generally carried out when the 
module is free from syntax errors. The two types of code review techniques are code walkthrough 
and code inspection. 
 
In the code walkthrough, a module is taken for review by development team members. Each 
member tests a module with several test cases. The objective of the code walkthrough is to detect 
any logical errors in the source code. Each member notes their observation and discusses the same 
in the walkthrough meeting. Based on members' observations, the code is modified, tested for 
syntax errors, and submitted for a code walkthrough. This process is repeated till the walkthrough 
team is satisfied with the source code. 
 
In code inspection, the source code is checked for common errors that are in the code due to the 
oversight of the programmer. It may also check whether coding standards and guidelines have 
been followed. The code inspection is generally carried out by an expert who will be able to 
identify the common errors. The experts will identify the errors, and the source code will be 
modified accordingly. 

 
 
 
 
 
 



100 | Software Design 

 

UNIT SUMMARY  
 Design Principles 

o Problem Decomposition and Hierarchy 
o Abstraction 
o Modularity 

 

 Modular Design 
o Coupling 
o Cohesion 

 
 Software Architecture 

 

 Architectural Styles 
o Model-View-Controller Architecture 
o Layered Architecture 
o Repository Architecture 
o Client-Server Architecture 
o Pipe and Filter Architecture 

 
 User Interface Design 

o User Interface Design Process 
o User Interface Design Principles 

 

 Object Oriented Design 
o Interaction Diagram 
o Class Diagram 
o Case Study: Object Oriented Design 

 
 Stuctured System Design 

o Structure Chart 
o Tranform Analysis 
o Transaction Analysis 

 

 Coding Principles 
 

 

 

 

 

 



Software Engineering | 101 

 
 

 

EXERCISES 
 

Multiple Choice Questions 
  

3.1 The process in which only essential details are specified without giving inner-level details is 
(a) Abstraction  (b) Hierarchy  (c) Partitioning   (d) Detailed design 
 

3.2 The strength of the relationship between the modules of a system is  
(a) Cohesion  (b) Abstraction  (c) Coupling  (d) Architecture 
 

3.3 In one of the following architectures, shared data is used across the applications  
 (a) MVC   (b) Repository  (c) Pipe and Filter (d) Cloud 
 
3.4  One of the diagrams is used to model the interaction of time ordering of messages between the 

objects 
(a) Class diagram 
(b) Collaboration diagram 
(c) Communication diagram 
(d) Sequence diagram 
 

3.5 The notation that is used to destroy an object dynamically in an interaction diagram is  
(a) Del  (b) X   (c) !   (d) & 
 

3.6 The software design artifact of structured system design is a 
(a) Class diagram    (b) Sequence diagram  
(c) Collaboration diagram     (d) Structure Chart 
 

3.7 In one of the following methods, the structure chart is divided into input, process, and output 
modules 

(a) Transform Analysis   (b) Transaction Analysis 
(c) Object-oriented design   (d) None of the above 
 

3.8 The cohesion that exists between functions of a module when the output of one function becomes 
an input to the other is  

(a) Functional      (b) Sequential 
(c) Procedural     (d) Communicational 



102 | Software Design 

 

 
3.9 When the modules of the system commmunicate using composite data structures that it said to be  

(a) Common Coupling   (b)  Control Coupling 
(c) Stamp Coupling    (d)  Data Coupling 
 

3.10 The most desirable form of coupling is 
 (a) Data coupling       (b) Control coupling   
 (c) Common coupling     (d) Stamp coupling 
 

Answers of Multiple Choice Questions 
3.1 (a), 3.2(c), 3.3(b), 3.4(d), 3.5(b), 3.6(d), 3.7(a), 3.8 (a), 3.9(c), 3.10 (a) 

Short and Long Answer Type Questions  
 
3.1 Differentiate between analysis and design 
3.2 What are design principles? How do you evaluate the design? 
3.3 Differentiate between (i) Coupling and Cohesion  (ii) Functional and Data Abstraction  
       Requirements (iii) Object-oriented design and Structured design. 
3.4 What is modularity? Why is it required 
3.5 What are design principles? What issues emerge if the design principles are not followed  
3.6  Specify different scenarios that help in achieving loose coupling and tight cohesion 
3.7 Propose a software architecture when the following characteristics are critical to the system’s    
      development (i) Security and Availability (ii) Maintainability and Performance (iii)  
      Maintianability and Availability 
3.8 What are user interface design principles? Why are they required for a user interface design? 
3.9 Differentiate between (i) Object Oriented and Structured System design (ii) Sequence and  
      Collaboration diagram 
3.10 What is a class diagram? How is it modeled 
3.11 Describe the relationships used in modeling class diagrams along with their notations. Give  
        Examples. 
3.12 What is transform analysis? Explain the procedure to convert a data flow diagram into a structure  
        chart using transform analysis. 
 
 
 
 



Software Engineering | 103 

 
 

PRACTICAL  
 
3.1 Consider any program or an application you have developed and identify various types of coupling 

and cohesion in it. 
 
3.2 Suggest suitable architectures for the given applications considering combinations of various  
      quality charcteristics (non-functional requirements)  

(a) Banking System (b) Railway reservation System (c) Online Shopping System 
 
3.3 Design the given applications using object oriented design and structured design (a) Railway 

reservation System (b) Online Shopping System. 
 
3.4 Model any project using the appropriate design paradigms and convert it into source code by 

selecting target programming language.  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



104 | Software Design 

 

KNOW MORE  
 

Software design helps in realizing the solution for the problems stated by the customer. The first 
step in the software design process is to decide the system’s architecture. The system’s structure 
is modeled based on the non-functional or quality characteristics of the target system. However, 
well-defined architectural patterns can be used if it suits the solution domain.  
 
In the next step, the software design paradigm is decided based on the target environment in 
which the system will be implemented. Accordingly, object-oriented or structured design is 
adopted. An effective user interface design is required so the system user can access its features 
easily, thus satisfying the usability characteristics. 
 
If the object-oriented design is adopted, the use cases that are identified during the requirements 
analysis phase are realized. The use case is realized by modeling each scenario using interaction 
diagrams. The interaction diagrams show the exchange of messages between the objects. Then a 
class diagram is modeled. In some systems, it is evident that some of the objects change their 
state based on certain events. In such a case, a state transition diagram has to be modeled. A state 
transition diagram consists of states that define objects' characteristics and transitions that change 
an object from one state to another. The transition happens when an event occurs. An event can 
be a call, event, or time event. Once an event occurs, the appropriate method is invoked, which 
changes the state of the object. The state transition diagrams can also model the guard 
condition. Guard condition is a boolean expression that must be true for triggering an event. The 
artifacts of state transition diagrams help in realizing event-driven systems. 
 
The data flow diagrams are converted to a structure chart if the structured design is adopted. DFD 
will be converted to a structure chart depending on the type of systems, transform, or transaction-
driven systems.  
 
The design artifacts are then converted to source code. The source code has to be written by 
following specific standards and guidelines. The source code is tested for syntax errors and will 
go through the code review process. In the code review process, the source code is corrected 
before it goes through the formal testing. 
If source code is given and one wants to know the working of a system, then the design should 
be available. The process of converting source code to design is said to be reverse engineering.  
 
 
 
 
 
 



Software Engineering | 105 

 
 

REFERENCES AND SUGGESTED READINGS  
 

 Sommerville, I. (2016) Software Engineering. 10th Edition, Pearson Education Limited, 
Boston 
 

 Roger S. Pressman (2010) Software Engineering: A Practitioner's Approach, McGraw-Hill 
 

 Rajib Mall (2018), Fundamentals of Software Engineering, 5th Edition, PHI Learning Private 
Limited. 
 

 Pankaj Jalote (2010), Software Engineering: A Precise Approach, Wiley-India 
 

 Grady Booch, James Rumbaugh, Ivar Jacobson (2017), The Unified Modeling Language 
User Guide, 2nd Edition, Pearson India Education Services Pvt. Ltd. 
 

 IEEE Recommended Practice for Software Design Descriptions (1016-1998) 
 

 
Dynamic QR Code for Further Reading  

 
 
 



Software Engineering | 106 

 

 
 
 
 
 

d 

 

 

 

UNIT SPECIFICS  

Through this unit we have discussed the following aspects: 

 Testing Concepts; 
 Testing process; 
 Functional testing;  
 Structural testing; 
 Levels of testing;  
 Quality Assurance;  

 

The practical applications of the topics are discussed for generating further curiosity and creativity 
as well as improving problem solving capacity.  

      Besides giving multiple choice questions as well as questions of short and long answer types 
marked in two categories following lower and higher order of Bloom’s taxonomy, assignments, a 
list of references and suggested readings are given in the unit so that one can go through them for 
practice. It is important to note that for getting more information on various topics of interest some 
QR codes have been provided in different sections which can be scanned for relevant supportive 
knowledge. 

      After the related practical, based on the content, there is a “Know More” section. This section 
has been carefully designed so that the supplementary information provided in this part becomes 
beneficial for the users of the book. This section mainly highlights the initial activity, examples of 
some interesting facts, analogy, history of the development of the subject focusing the salient 
observations and finding, timelines starting from the development of the concerned topics up to the 
recent time, applications of the subject matter for our day-to-day real life or/and industrial 
applications on variety of aspects, case study related to environmental, sustainability, social and 
ethical issues whichever applicable, and finally inquisitiveness and curiosity topics of the unit. 

 

4           Software Testing           



Software Engineering | 107 

 
 

 

RATIONALE  

 
          One of the issues with software development is that the delivered system often fails to meet the 

customer's expectations. One of the reasons for this is improper and unbiased testing in software 
development phases. Testing is the process of verifying whether the behavior of the software or 
a program is as per the user's expectations. Testing is generally used to test the source code. 
However, testing is required at each phase of development. The specifications must be tested to 
check whether they meet the customer's requirements. 

 
Similarly, the design must be tested to determine whether it meets the requirements  
specifications. The errors can occur at any stage of software development. If the source code  
does not give the expected outcome, then the program's internal structure has to be tested to  
identify the bugs in the system. 

 
Testing is an important activity that requires significant effort. A systematic approach to software 
testing is required to produce better-quality software. Testing aims to detect errors, and the 
process of fixing these errors is said to be debugging.  

 
Quality software is the one which is compliant with the user's requirements. The user 
requirements are the expected features of the system. For each expected behavior, there is a need 
to define a set of test cases. The test cases are used to examine the actual behavior of the system. 
If the expected and actual behavior matches, then the test case is said to be passed. Otherwise, 
there is a defect in a particular test case. The development team then rectifies the errors, and the 
testing is again performed. There is a need to follow a testing process that includes test planning, 
test design, test execution, test reports, and closure.  

 
Testing cannot be exhaustive. It is challenging to test a program with all possible inputs. Further, 
it is difficult to say when the testing will end. In addition to testing the system's functionality, the 
software has to be tested for performance, reliability, maintainability, usability, etc., depending 
on the system's desired non-functional characteristics. The developers generally try to prove that 
the software works correctly. To avoid any bias, it is preferred that the testing need to be carried 
out by the testing team, which is different from the development team. Test reports are the primary 
artifacts of testing activity. 

           
As testing is a challenging task, it is sometimes difficult to understand why a defect occurs. The 
solution is first to test the simple functions, and then the functions are integrated to check the 
correctness of a module. In the next step, the modules are integrated to test the entire system. The 
interfaces are to be tested during the integration activity. Tests are initially realized using artificial 
data. Before delivering the system to the customer, the system has to be tested with actual data 
by the customer. Quality control is the process of detecting and correcting a defect, whereas 
quality assurance is the process of defect prevention.   
 



108 | Software Testing 

 

 

PRE-REQUISITES  
Computer Programming (Diploma Semester-III) 
Scripting Languages  (Diploma Semester-III) 
 

UNIT OUTCOMES  

List of outcomes of this unit is as follows: 
U4-O4: Understand the software testing fundamentals 
U4-O4:  Understand and apply black box testing techniques 
U4-O4 : Understand and apply white box testing techniques 
U4-O4: Understand the levels of testing. 
U4-O4:  Understand the quality assurance process  
 

Unit-4 
Outcomes 

EXPECTED MAPPING WITH COURSE OUTCOMES 
(1- Weak Correlation; 2- Medium correlation; 3- Strong Correlation) 
CO-1 CO-2 CO-3 CO-4 CO-5 

U4-O1 1 1 1 1 3 
U4-O2 1 2 2 2 3 
U4-O3 1 2 2 2 3 
U4-O4 1 1 2 2 3 
U4- O5 1 2 3 3 3 

 

  

4.1 TESTING PRELIMINARIES 
     

Software design aims at testing an application to find errors. The testing process is realized in 
each phase of software development. Even after testing a program sufficiently, it cannot be 
guaranteed that the program is error-free. It is not possible to exhaustively test any program or 
software with all possible inputs. If the program doesn't behave as expected, then the instance of 
the failure is noted, which will be rectified during the debugging process. 
 

     4.1.1 Error, Fault and Failure 
 

According to IEEE std.1044-2009,An error is a human action that produces an incorrect result. 
Error or defect generally occurs when the development team fails to understand the functionality 



Software Engineering | 109 

 
 

properly and is not able to transform the design into source code appropriately. An error may lead 
to a fault. The system that has yet to produce the expected output might be because of improper 
implementation of functionality or its parts. 
  
The condition that causes a program not to exhibit its expected behavior is said to be a fault or 
bug. The fault generally occurs when the program or software doesn't include the mechanisms to 
handle abnormal behavior in the program. This includes a lack of fault tolerance in the source 
code, inappropriate data, lack of resources, etc. Conditions like the inability to handle divide-by-
zero errors and the reading of unavailable data also lead to faults. If a fault is not managed, it may 
lead to failures. Faults can be prevented by following coding principles and guidelines. Faults can 
be addressed by implementing code review techniques like walkthroughs and inspections. 
  
Failure is the inability of a program to meet its functionality. This makes the system 
unresponsive. If the end user detects an issue in the product, it is referred to as a failure, as the 
software cannot perform the required functionalities. The accumulation of several defects also 
leads to failure. Failure exists when faults are present in the system. Failures may be caused by 
the inability to realize the system's functional or non-functional requirements. In some systems, 
the functionality is implemented successfully, but it does not satisfy the desired non-functional 
characteristics, leading to failures.  
  
A safety-critical system is one whose failure may result in severe damage or loss to the 
environment, life, or equipment. If the automated surgery system can perform the surgery but 
cannot complete the process within the stipulated time, it may lead to failures.  
 
4.1.2. Test Oracle 
 
A Test oracle is a mechanism to determine whether the actual behavior confirms the system’s 
expected. Test oracle (Fig 4.1) is used to check the correctness of the outcome of software or a 
program. In the testing process, the test cases are given to test oracle and the software under 
testing. The output of the test oracle (expected behavior) is compared with the output of the 
software under test to check the correctness of the system.  
 

 
Fig. 4.1: Test Oracle 



110 | Software Testing 

 

Test oracles are required to realize testing activity. Generally, the oracles are human beings, 
which may lead to several mistakes. There can be a discrepancy between the software and test 
Oracle results. Hence there is a need to automate the test oracles, which are generated from 
programs, specifications, etc. The programs, specifications, and other artifacts are expected to be 
complete, consistent, and unambiguous. Test oracles can also be used to test the system's 
specification, architecture, and design. 
 
4.1.3. Verification and Validation 
 
Verification is determining whether the output produced in one phase of software development 
confirms the conditions stated at the beginning of that phase. In contrast, validation determines 
whether the total system confirms the requirements stated at the beginning of the project. 
Verification is required after each phase of software development. However, validation is done 
once the final product is available. 
  
Verification is the process of testing a system in a simulated environment, whereas validation is 
the process of testing a system in a live environment. If the verification is diligently carried out 
at the end of each phase, then validation would be simple. Testing includes both verification and 
validation activity. Inspection, reviews, and walkthroughs are used for verification, whereas 
testing of the end product is done for validation.  
  
According to Boehm, 
Verification: "Are we building the right product?" 
Validation: "Are we building the product right?" 
  
Testing whether the requirements specification is as per the requirements given by the customer 
is verification. Testing whether the design produced confirms the software requirements 
specification document is verification. Testing whether the module or a function confirms the 
design is verification. Testing the final software deliverable to check whether it meets the 
customer's requirements is validation. 
 

4.2 TESTING PROCESS 

 
ANSI/IEEE 1059 standard defines software testing as “The process of analyzing a software item 
to detect the differences between existing and required conditions (defects/errors/bugs) and to 
evaluate the features of the software item.” 
  
In order to test the artifacts of software effectively, a systematic approach is required. The 
software testing process follows a well-defined sequence of tasks to ensure software quality. The 
testing team defines the scope of testing. Various tasks to be tested are listed, and the entry and 
exit criteria for testing each task are specified. The phases in the software testing process are 
specified in Figure 4.2. 
 
 



Software Engineering | 111 

 
 

 
 

Fig. 4.2: Testing Process 

 
    4.2.1 Requirements Analysis 

 
The testing team needs to understand the requirements to test the system effectively. The testing 
team reviews the requirements specification document to identify the scope of testing. The test 
engineers will meet the other teams to identify the test tasks. A list of tests for testing 
functionality, performance, security, and other requirements is prepared. 
  
In section 2.3.2 (Indian Bank case study), three use cases were identified: Deposit, withdrawal, 
and transfer. These are the functional requirements to be tested. The use case specification 
specifies the tasks in each of these use cases. Similarly, the university library case study (section 
2.3.4) specifies several functions to realize the issue and return book functionalities. 
 

4.2.2 Test Planning 
 
The resources and workforce required to test a system are planned in this phase. The testing 
deliverables are defined. The effort and cost required to perform testing are estimated. The 
schedule of testing various artifacts is also decided. Roles and responsibilities are assigned to the 
testing team. 
  
The effort, schedule, and workforce required to test various functionalities must be estimated. 
Furthermore, this phase also plans whether the testing should be done manually or using 
automated tools. 
 

4.2.3 Test Design 
 

In this phase, the test cases are designed. The test scenarios and the test data for each scenario are 
created. The expected outputs of each test case are also listed.  
  
A test case is a triplet <I, S, O>. Where I is the set of input data given to the system, S is the 
system's state, and O is the output or outcome produced by the system. The state represents 



112 | Software Testing 

 

software development artifacts produced at the end of each phase. A test suite is a set of test cases 
with which the quality of a given deliverable is tested. A system may consist of different test 
suites. Each test suite may represent the testing of a module or functionality which requires a set 
of test cases.  
  
The guidelines for test case design are as follows: 
 

 Select inputs so that the system or module generates errors. 
 Design test cases that cause input buffers to overflow 
 Force the system to generate invalid outputs. 
 Give inputs such that the computational results are too large or too small. 

  
Test First Development (TFD) prepares test cases before the system is implemented. Generally, 
the agile development process follows the TFD approach, where the user is also involved in 
deciding the test cases. Once the sprint is ready, it is tested with the test suite, which was designed 
before realizing the story. Furthermore, pair programming also helps test the system better, where 
one member writes a program and the other reviews it to suggest any changes. This verification 
process helps in developing better systems.  
  
For example, each use case (section 2.3.2) has a set of tasks specified in the use case specification. 
Test cases are written for each of the tasks. The test cases for all use case tasks form a test suite. 
The generic format of a test case is given in Fig. 4.3.of a use case forms a test suite. The generic 
format of a test case is given in Fig. 4.3. 
 

Test id Tasks Expected Result Actual Result Status 

    Pass/Fail 

Fig. 4.3: Test Design template 
 
 Each test case has a test id, and the task or test case description specifies the functionality to  
              be tested. The Expected result of each task is specified.  
 

4.2.4 Environment Setup 
 

The essential software and hardware are required to create a test environment. A list of required 
software and hardware is prepared. For automated testing, the required testing tools are identified. 
This activity can be done in parallel with the test design phase. 

 

4.2.5 Test Execution 
 

During this phase, the testing team tests the software's features using the test cases. Test 
execution, process, refers to the execution of a set of programs or functions for the given set of 
inputs. The expected results are compared with the actual results produced. Any defects identified 
during test execution are recorded. The severity level of the defect reported is also recorded so 



Software Engineering | 113 

 
 

that the development team can prioritize the issues to be addressed. This phase is iterated after 
the development team has removed the defects. The success or failure of test cases is updated in 
the test reports. Once a task is tested, the actual results and the status of the testing activity are 
updated in Fig. 4.3. 

  

4.2.6 Test Closure 
 

Test closure is the final step in software testing. It is to ensure that all testing activities are 
completed and documented. The feedback from the entire testing process is collected. In the next 
testing life cycle, feedback is used to improve the testing process. 

 
 

4.3 BLACK BOX TESTING 
 

The black box or functional testing involves testing a system, module, or function without 
knowing its design or the source code. The test engineer knows the inputs and expected outputs 
and is unaware of how the inputs are transformed into respective outputs.  
The following are the guidelines for black box testing: 

 Identify the functionality to be tested. Understand its scope and objectives 
 Identify the resources required for testing functionality.  
 Create a test suite containing test cases to test the functionality and list the expected 

outcome 
 Execute the test cases and record the outcome of the test (Successful/Unsuccessful) 
 Submit the report to the development team 
 Repeat the process for all functions and modules of the software. 

 
Testing a system with all possible inputs is an impractical exhaustive test. For example, to 
compute the roots of the quadratic equation ax2+bx+c=0, we need three inputs a, b and c. If all 
three variables occupy 2 bytes, we need a total of 216*216*216=248 test cases to test the program 
with all possible inputs.  
 
The essential criteria for the black box testing technique is to design the appropriate test cases to 
test the system sufficiently. Several black box techniques will help in designing the test cases. 
Each testing method has its pros and cons. However, some bugs can’t be detected by any of the 
methods.  
 
 
 
 
 



114 | Software Testing 

 

4.3.1 Equivalence Class Partitioning 
 
As exhaustive testing is impractical, in equivalence class partitioning or equivalence partitioning 
method, the input domain is divided into a finite number of classes or groups based on the 
similarity in the resultant outcome, which is a partition. It is assumed that if the representatives 
from each group or class produce an outcome, all the elements from the same group also produce 
the same outcome. If one test case in a group or class results in an error, then all the test cases of 
the same class are also expected to produce the same error. Since all values in a partition are 
expected to produce the same output, they are equivalent partitions. The equivalent partitions are 
to be made both for valid and invalid inputs. This method is used to reduce the total number of 
test cases to a finite set of test cases and satisfy the behavior of the entire input domain.  
 
There are two steps to performing testing using equivalence partitioning. First, identify all 
partitions from the input and output values for the software under test. Secondly, test each 
partition with one member to maximize the complete coverage. 
 
 
Enter Marks (between 0 to 100) :       
 
 
 

Equivalence Class Partitioning 

Invalid Valid Invalid 

<0 0-100 >100 

Fig. 4.4: Equivalence Class Partitioning scenario 
 
In Fig. 4.4, the system’s user has to enter input (marks). The valid range of marks is between 0-
100. Suppose the value entered by the user is between 0-100; it is a valid input. If the output 
produced is correct for any value between 0-100, it is assumed that the same output will be 
produced for all values between 0-100. The other two equivalence classes are for invalid inputs. 
In one of them, the input is a negative number, and in another class, the input is greater than 100. 
 

       4.3.2 Boundary Value Analysis 
 

It is observed that frequent errors are committed by programmers while dealing with boundary 
conditions. The boundary condition refers to the input value, which is around the limits of values. 
If variable X's input domain is between 1 to 100, then the test cases for boundary values include 
0,1,2,99,100,101. 
  
Boundary value analysis (BVA) is an approach to finding defects at the boundaries. One of the 
reasons for the occurrence of such defects is that the programmers may misuse the relation 
operators. For example, they may use > instead of >= or < instead of <=. The boundary value 



Software Engineering | 115 

 
 

analysis technique will help in identifying those defects. The second reason for such defects is 
the confusion caused by implementing several iterative constructs. Each of these may have 
different terminating conditions. For example, the condition used in a while may differ in 
do..while for all scenarios. The third reason for such defects is an improper understanding of the 
requirements.  
  
The software testing life cycle's defect design phase must identify all such conditional statements 
and loops to incorporate test cases for boundary value analysis. Boundary value analysis can also 
be used in white box testing to check internal data structures' boundary or limit conditions like 
stacks, queues, and arrays.  
  
Consider an example where the range 0 ≤ X ≤ 10 has to be tested. The test cases include 0,1, 9,10 
(valid inputs), and -1,11 (invalid inputs). If each input has a defined range (first, last), the six 
boundary values are first-1, first, first+1, last-1, last, and last+1. 

 

  4.3.3 Decision Table 
 
Decision table technique is used when there are several actions taken based on the combinations 
of conditions based on the inputs given to the system. It is used to analyse the complex logical 
relationship between several elements of the system. The general form of decision table is 
specified in Fig. 4.5. 
 

 Conditional Entries 

Conditional  
Statements 

C1 True True False False 
C2 True True False True 
C3 True False True False 

 Action Entries 

 
Action  
Statements 

A1 √    
A2   √  
A3  √   
A4    √ 

Fig. 4.5: Decision Table  
 
The decision table consists of four quadrants: Conditional Statements, Conditional Entries, 
Action Statements, and Action Entries. The Conditional statements specify the individual boolean 
conditions (C1..Cm). As per the requirements, the possible truth values are specified in the 
conditional entries section. The possible actions (A1.. An) to be realized are specified in Action 
Statements section. The action based on the conditional entries is specified in the Action Entries 
section.  



116 | Software Testing 

 

  
For example, a bank provides interest rates for female senior citizens at 11%, male senior citizens 
at 10%, and for the rest of the customers, it is at 8%. The decision table for the given scenario is 
given in Fig 4.6. 
 

 Conditional Entries 

Conditional 
Statements 

C1- Female False False True True 
C2- Senior 

Citizen 
False True False True 

 Action Entries 

 
Action  
Statements 

A1- Interest-11%    √ 
A2 - Interest-10%  √   
A3  - Interest-8% √  √  

Fig. 4.6: Decision Table for interest rate computation 
 

 

4.3.4 Cause Effect Graph 
 
Unlike equivalence class partitioning and boundary value analysis, a cause-Effect graph is a 
technique that considers the combination of input conditions so that the test cases become 
manageable and provide clarity to test the outcome of an artifact under test. Causes and effects 
are find identified for the system under test. A cause and effect represent distinct conditions and 
outcomes of the system or program under testing.  
 
Each condition(cause) is represented as a node. The output produced is terminal action nodes 
called Effects. Conditions are combined using intermediate nodes or boolean operators that result 
in an effect in the cause-effect graph.  
 
Consider the condition and action statements specified in Fig. 4.6. The conditions are C1- Female, 
C2- Senior Citizen, and effects are E1- Interest 11%, E2- Interest 10%, and E3- Interest 8%. The 
cause-effect graph of the given scenario is specified in Fig. 4.7. 



Software Engineering | 117 

 
 

 
Fig. 4.7: Cause-Effect Graph 

 
From the above figure, the following test cases are derived: 
 
  C1 ∧ C2 → E1  //For given inputs if C1 and C2 are true, then the output is E1 
¬C1 ∧ C2 → E2  //For given inputs if C1 is false and C2 is true, then the output is E2 
C1 ∧  ¬ C2 → E3  //For given inputs if C1 is true and C2 is false, then the output is E3 
¬C1 ∧  ¬C2 → E3   //For given inputs if C1 and C2 are false, then the output is E3 
 

4.4 WHITE BOX TESTING 
 

The black box testing is used to test the functionality of the system. This is done to check whether 
the system with given inputs gives the expected outcome. It does not deal with the internal 
structure of the program. White box testing, structural testing, or glass box testing checks the 
program's internal logic. The test cases are designed to check the program logic. The developers 
of the system do this. White box testing considers the program structure and internal design flow. 
Generally, the defects in the program under test are developed due to incorrect translation of 
design into a source code. Other defects are caused by programmers or by programming language 
constructs used.  
 
White box testing uses test cases to test the various criteria in the program structure. Code 
coverage is a glass box testing technique that verifies how much code is executed. It involves test 
case design and execution to determine the percentage of the source code covered by the testing. 
Code coverage testing includes a statement, condition, path, and function coverage. 



118 | Software Testing 

 

        4.4.1 Statement Coverage 
 
Statement coverage refers to designing the test cases such that each statement in the program is 
executed at least once. The statements in a program can be simple, compound, conditional, or 
iterative. The code coverage is expected to be achieved for each type of statement. The code 
consisting of statements (other than conditional or iterative statements) that are executed 
sequentially generally starts at the first statement and will go through all statements until the last 
statement is reached. It appears that 100% code coverage is achieved in this scenario. However, 
if these statements produce abnormal behavior or exceptions such as divide-by-zero, then if a test 
case starts at the beginning may not cover all statements in the program.  
 
When the statement is a simple conditional statement like if..then..else, there should be a test case 
for if.. then part and else part of the conditional statement. The test cases should be designed so 
that each part of conditional statements is tested at least once. Similarly, the nested..if and switch 
statements would require multiple test cases for each conditional statement in if..else ladder and 
for each case in the switch statement.  
 
An iterative statement executes a set of statements repeatedly until or while a certain boolean 
condition is satisfied. Loops may fail because of improper handling of boundary conditions in the 
boolean condition. The improper termination condition may also be the cause of the defect. For 
better coverage of iterative statements, a loop need to be tested around the boundary. Further loop 
need to be tested for normal operations when the condition is true and otherwise.  
 
Statement coverage = (Total statements executed/Total number of executable statements) * 100 
 
The number of test cases increases from simple statements to conditional and iterative statements. 
However, exhaustive coverage of all statements is impractical. Further, even if the program has 
high statement coverage, the software under test will not be defect free. Consider the source code 
in Fig. 4.8. 
 

Oddeven(int n){ 
 if (n%2==0) 

  pr intf(“Even”); 
 else 
  printf(“Odd”); 
 }      

                                                      Fig. 4.8: oddeven() function  
 
 
The two scenarios for computing statement coverage of the oddeven() function is given in Figure 
4.9. 



Software Engineering | 119 

 
 

 
Scenario-1 (n=12) Scenario-2 (n=15) 

1. Oddeven(int n) { 
2.           if (n%2==0) 
3.               printf(“Even”); 
4.           else 
5.                printf(“Odd”); 
6.  }      

1. Oddeven(int n) { 
2.           if (n%2==0) 
3.               printf(“Even”); 
4.           else 
5.                printf(“Odd”); 
6.  }      

Statement coverage= (4/6) *100= 66.67% Statement coverage = (5/6) *100= 83.33% 
Fig. 4.9: Statement coverage for two scenarios of Oddeven() function 

 
Both scenarios cover all statements. Hence the code coverage is 100%. 
Consider the source code given in Fig. 4.10 
 

sample(int n){ 
           int p; 
            m=0; 

 if (n%2==0) 
  m=m+n; 
              n++; 
 else 
              p=n/m   
         }      

                                     Fig. 4.10: Sample function for statement coverage 
 
The two scenarios for computing statement coverage of the sample() function (Fig. 4.10) is given 
in Figure 4.11. 
 
 
 
 
 
 
 
 
 
 
 



120 | Software Testing 

 

Scenario-1 (n=2) Scenario-2 (n=3) 
1.  sample(int n){ 
2.           int p; 
3.            m=0; 
4.           if (n%2==0){ 
5.                m=m+n; 
6.                 n++; } 
7.          else 
8.                p=n/m; 
9.       }      

1.  sample(int n){ 
2.           int p; 
3.            m=0; 
4.           if (n%2==0){ 
5.                m=m+n; 
6.                 n++;  
7.          else 
8.                p=n/m; 
9.       }       

Statement coverage= (7/9) *100= 77.78%                      Program fails 
Fig. 4.11: Statement coverage for two scenarios of sample() function 

 
In the above program, if the function is tested with an even n value, we will get 77.78% of code 
coverage. However, if the value entered is odd, the program often fails (because of the divide-by-
zero error). Even though the code coverage is 77.78% when the number is even but the program 
may fail the majority of times if the inputs to the function are odd most of the time. The statement 
coverage cant be decided only by checking one condition. 
 

        4.4.2 Condition Coverage 
 
Condition coverage is a white box testing technique used to test both possible results of a 
predicate and different combinations of predicates or conditions in compound boolean 
expressions. The test cases should be defined so that each condition has to be evaluated for 
various combinations of each elementary condition.  
 
Condition coverage =  
(Total decisions executed / Total number of decisions statements in the program) * 100 
 
 
 
 
 
 
 
 
 
 
 



Software Engineering | 121 

 
 

Consider the simple program segement given in Fig. 4.12 
 

myfunc( ){ 
           int a=10; 
           if (a>=10) 
  printf(“Valid input”); 
           else 
              printf (“Invalid input”); 
              }      

Fig. 4.12: Sample function for condition coverage 
 
The test suite for the condition coverage of Fig 4.12 is given in Fig. 4.13 
 

Test case a>=10 Output 
1 True Valid input 
2 False Invalid input 

Fig. 4.13: Condition coverage for Fig. 4.12 
 
Consider the program segment given in Figure 4.14 
 

func(int p, int q, int r, int s){ 
           if ((p==0 || q==0) && (r+s)>=2)) 
  printf(“Welcome”); 
           else 
                      printf (“Thank you”); 
              }     
Fig. 4.14: Program with compound condition 

 
The program segment of Fig. 4.14 requires a test suite to satisfy the compound condition criterion. 
The condition(p==0 || q==0) involves a logical OR operator. If p=0, the value is True for the first 
condition. As the logical OR operator is used, the predicate (q==0) need not be checked. This can 
be combined with both values of True and False outcome of the third condition. The test case 
required to adequately check a predicate or condition is 2n, where n is the number of conditions. 
This would be impractical for the programs with many conditions. However, short circuit 
evaluation may reduce the number of test cases. The test cases for the condition coverage of Fig. 
4.14 are given in Fig. 4.15. 
 
 
 



122 | Software Testing 

 

Test case p==0 q==0 (r + s)>=2 Output 
1 True Don’t care False Thank you 
2 True Don’t care True Welcome 
3 False True False Thank you 
4 False True True Welcome 
5 False False Not required Thank you 

Fig. 4.15: Condition coverage of Fig. 4.14 
 
In test case-1, test case-2, and test case-5, only two conditions are checked. All three conditions 
are checked in test case-3 and test case-4, respectively. The drawback of this approach is that as 
the conditional statements increase, it will be impractical to carry out exhaustive testing for 
conditional coverage. 
 

       4.4.3 Path Coverage 
 
Path coverage is a white box testing technique where test cases are designed to test all possible 
paths in a program from the beginning to the end. The test cases should be designed so that each 
of the paths in the program is tested. The number of linearly independent paths in the program 
can be computed using a cyclomatic complexity measure.  
A program or a module can be represented as a flow graph, a directed graph where the vertex 
represents a statement or a block and the edge represents the control flow. Vi and Vj are vertices 
of a program; an edge from node Vi to Vj  means the statement Vj is executed immediately after 
the execution of statement Vi. Let N be the number of vertices, E the number of edges, and P the 
connected components of a flow graph. Then the cyclomatic complexity is computed as  
                                                        V(G) = E – N + P. 
The cyclomatic complexity that represents the number of independent paths in the given program 
is also expressed as  
                                                        V(G) = N(DE) + 1 
Where N(DE) is the number of Decision Elements (conditions) in the program. 
Consider the program given in Fig. 4.16. 
 



Software Engineering | 123 

 
 

1.    Perfectn( int n) 
2.    { 
3.          int  sum=0, i, k=1; 
4.          while (k<=n) 
5.           { 
6.                 for(i=1; i<=k/2; i++) 
7.                 { 
8.                         if (k%i==0) 
9.                              sum=sum + i; 
10.                 } 
11.                  if (sum==k) 
12.                         printf("%d  ",k); 
13.                  k++; 
14.                  sum=0;  
15.           } 
16.  }  

                                  Fig. 4.16: Function to display perfect numbers upto n 

 
The flow graph of the program (Fig 4.16) is given in Fig. 4.17 

 
Fig. 4.17: Control Flow graph for Fig. 4.16  

 



124 | Software Testing 

 

In Fig 4.17, there are six vertices and nine edges. The vertex A consists of statements 1,2,3,4. 
Once a program starts, these four statements are executed. Then, separate flows are realized 
based on the decision taken in statement 5. 
The cyclomatic complexity of the graph is V(G) = 9-6+2 = 5 
The number of Decision elements in the program (statement-4,6,8,11) is 4. The cyclomatic 
complexity V(G) = 4+1 =5. 
There are five linearly independent Paths in the program. 
Path-1: A-F 
Path-2: A-B-D-E-F 
Path-3: A-B-D-A-B-D-E-F 
Path-4: A-B-C-D-E-F 
Path-5: A-B-C-B-C-D-E-F 
The test cases are to be written to test all paths in the program. For a given test suite, the path 
coverage is defined as  
Path coverage =  

(Total paths executed / Total number of paths in the program) * 100 
 

       4.4.4 Function coverage 
 
Function coverage is a white box testing used to determine how many functions the test cases 
cover. The requirements are mapped into the functions in the design phase. For example, the data 
flow diagrams are converted to structure charts in structured systems. In function coverage, the 
test cases are to be written for different functions to check the correctness of the functionality. 
The data and control couple information provided in structure charts also help know the inputs 
and expected outputs from the function at the low levels. This also helps test whether the code 
written is as per the design produced.  
 
There are several advantages of function coverage. It is easier to test a function as it will be easier 
to check if the function produces the desired output. If not, the functionality has to be modified. 
Further, we can also measure the number of calls to the function. If they are excessive calls, they 
can be optimized. Not all functions can be tested at a time. For a given test suite, the function 
coverage is defined as  
 
Function coverage =  

(Total functions executed / Total number of functions in the program) * 100 
 
 
 



Software Engineering | 125 

 
 

4.5 LEVELS OF TESTING 
 
Developers and test engineers cannot test any application in a single go, as detecting bugs in a 
monolithic program will be difficult. There are several tests to be carried out for testing an application. 
There are four stages of development testing.  

 Unit testing 
 Integration testing 
 System testing 
 Acceptance testing 

 
Testing levels are specified in Fig. 4.18. Unit testing is generally referred to as testing in the small 
as individual units are tested, whereas integration and system testing are termed as testing in the 
large. 

 

 
Fig. 4.18: Levels of Testing  

 

        4.5.1 Unit Testing 
 

Once the coding of a module or a component is complete, it has to be tested for its correctness. 
Unit testing is the process of testing individual modules or components. The developers do it. 
The test cases for testing a module or a component need to be designed, and the test environment 
is to be made ready to perform the unit testing.  
 
The source code must be available to test a single function or module. Additionally, the non-local 
or shared data structure that the module accesses is to be made available. A module can call or is 



126 | Software Testing 

 

called by another module. If a module has to call another module, then it is required that the called 
module has to be tested first. If a program consists of several functions, then each function is 
tested as a part of unit testing. 

 
       4.5.2 Integration Testing 

Once the individual modules are tested, the modules or components of the system are tested 
together as all units work together to realize the system's functionality. Integration testing aims 
to find defects that arise from the combination of various functional units. Integration generally 
refers to interactions between various units or modules of the system. The interactions which are 
modeled as interfaces between modules need to be tested. Integration testing focuses on testing 
the interfaces between the modules of the system.  
 
All modules may not be available to perform integration testing. However, to continue the testing 
activity, dummy modules simulating similar functionality are used for integration. Consider the 
set of units of a system and their interactions given in Fig. 4.19. 

 

Fig. 4.19: Modules and interfaces  

 
It is evident from the above figure that there are nine modules. Each module is separately tested 
in unit testing. The solid line specifies the explicit interactions between the modules. There are a 
total of 8 explicit interfaces which need to be tested. The methods for integration are as follows: 

 Top-down integration 
 Bottom-up integration 
 Sandwich or Bi-directional integration 
 Big-Bang integration 

 
In top-down integration, testing involves the topmost module or unit interfacing with other 
units at the next level in the same order to cover all components. Consider the modularization 



Software Engineering | 127 

 
 

of Fig 4.19. In top-down integration the integration starts with Module1 and Module2. The order 
in which interfaces are tested in top-down integration is given in Fig 4.20. 

 
 

Step Interfaces to be tested 

1 1-2 

2 1-3 

3 1-4 

4 1-2-5 

5 1-3-6 

6 1-3-6-(3-7) 

7 (1-2-5) – (1-3-6-(3-7)) 

8 1-4-8 

9 1-4-8-(4-9) 

10 (1-2-5)-(1-3-6-(3-7))-(1-4-8-(4-9)) 

Fig. 4.20: Order of interfaces tested using top-down integration of Fig. 4.19  

If a set of modules and their interfaces can realize a functionality with minimal interaction with 
other modules, then a set of such modules and their interfaces is known as a sub-system. Each 
sub-system represents a functionality that can be independently implemented. In Fig 4.20, step 
4,6,9 can be considered as sub-systems. A breadth-first search order is used in Fig 4.20. Similarly, 
depth-first-search order can also be used for the integration of modules. 

In bottom-up integration, the integration starts with the modules at the lowest levels in the 
hierarchy and moves upwards till all modules are integrated.  

Consider Figure 4.19. The order in which interfaces are tested in bottom-up integration is given 
in Fig 4.21. 

 

 

 



128 | Software Testing 

 

Step Interfaces to be tested 

1 5-2 

2 6-3, 7-3 

3 6-3-(7-3) 

4 8-4, 9-4 

5 8-4-(9-4) 

6 5-2-1 

7 6-3-(7-3)-1 

8 8-4-(9-4)-1 

9 (5-2-1) – (6-3-(7-3)-1)-(8-4-(9-4)-1) 

Fig. 4.21: Order of interfaces tested using bottom-up integration of Fig. 4.19  

 
In sandwich or bi-directional integration, top-down and bottom-up integration approaches are 
used together. To realize the bi-directional integration testing, stubs and drivers are used. This is 
required as the module which has to be integrated might not be developed or is under 
development. Stubs provide downstream connectivity of modules, whereas the drivers provide 
upstream connectivity. Stubs are functions that are used to simulate the functionality of the 
modules that are not yet integrated. They also simulate the behavior of missing modules, if any. 
Stubs are called programs used in top-down integration. A driver is a function that is used when 
the main module is not ready. Drivers are calling programs used in bottom-up integration. 
Consider a module hierarchy for a program as depicted in Fig. 4.22 

 

 
Fig. 4.22: Module hierarchy  

There are three modules Module1, Module2, and Module3. Assume that Module1 is ready for the test, 
but other two modules, which Module1 calls are not ready for testing. A piece of dummy code is 
written to simulate the functionality of Module2 and Module3. These dummy pieces of code are the 
stubs.  
 
 



Software Engineering | 129 

 
 

Consider a scenario (Fig 4.22), where Module2 and Module3 are ready, but Module1 is not ready 
for testing. Since Module2 and Module3 return results to Module1, a dummy code is written to 
simulate Module1. This dummy piece of code is called the driver. Considering the Figure 4.19, 
the order in which interfaces are tested in sandwich integration is given in Fig 4.23. 

 

Step Interfaces to be tested 

1 2-5 

2 3-6-7 

3 4-8-9 

4 (1-2-5)-(1-3-6-7)-(1-4-8-9) 

Fig. 4.23: Order of interfaces tested using sandwich integration of Fig. 4.19 

Steps 1-3 in Fig 4.23 uses bottom-up integration, and step-4 uses a top-down integration 
mechanism. 

 In Big-bang integration, all system modules are integrated and tested as a single unit. Instead of 
integrating modules in several steps, the big-bang integration waits for all the modules to be ready 
for the test and performs integration. This strategy is used when most of the modules are already 
available and only some modules are added or modified. In such a case, instead of testing 
interfaces individually, all modules are integrated once and tested to save the resultant effort. 

4.5.3 System Testing 
 

System testing is performed on the complete integrated system to evaluate whether the functional 
and non-functional requirements are realized as per the expectation. System testing is product-
level testing that helps identify defects that cannot be identified by testing a module or the 
integrated system. Test cases are written to test the overall functionality of the system. The non-
functional or quality characteristics of the system, like performance, reliability, portability, 
interoperability, etc are tested. Stress testing helps in assessing the robustness of the software. 
This includes testing the system for abnormal conditions, checking the system's behavior after a 
failure, and asses the recovery process. 
 

 4.5.4 Acceptance Testing 
 

The customer does acceptance testing. The customer tests the systems with real test cases to 
assess the system's quality. In agile methodologies, the acceptance test cases are written at the 
beginning jointly by the customer and sprint team. The acceptance test is executed to verify 
whether the end product meets the acceptance test criteria. Based on the outcome of the 



130 | Software Testing 

 

acceptance testing, the customer decides whether the product is accepted, rejected, or needs 
modification. 
 

4.6 QUALITY ASSURANCE 
 

Software quality refers to the system's compliance with the customer's expectations. Software is 
developed to satisfy the requirements given by the customer. Customer satisfaction depends on 
the proper transformation of requirements into a product such that the system's actual behavior 
meets the expected behavior. Quality control attempts to modify the product once the defects are 
detected. Quality control consists of defect detection and correction methods.  
Quality assurance aims at defect prevention in the design and development process rather than 
defect detection and correction. Instead of testing a developed program, the quality assurance 
method will review the system's design before being converted to source code. Furthermore, the 
source code is ensured to meet the coding principles and practices. 

 
4.6.1 Elements of Software Quality Assurance 
 
Software quality assurance (SQA) includes activities that focus on managing the quality of a 
software system. 
 
 Standards: Software engineering standards are provided by various organizations like 

ISO, IEC, IEEE, etc. The organizations may adopt these standards and ensure that the 
software developed complies with the adopted standards. 

 
 Reviews and Inspections: Reviews, audits, and inspections are the quality control 

activities that can be carried out after completing each phase of software development. It 
ensures that the artifact produced is in accordance with set quality standards. 

 
 Testing: Testing is done to find bugs. SQA ensures that the testing activities are properly 

planned and managed so that the testing goals are realized. SQA also analyzes the errors 
and faults produced so that appropriate processes are modified to address them in future 

 
 Change management: Change is inevitable, but if it is not properly managed, it may 

lead to chaos and result in poor quality system. SQA ensures that a proper change 
management process is in place so that the quality of the software system is ensured. 

 
 Risk management: Risk is a potential loss to the organization due to an unexpected 

event. SQA ensures that risks are analyzed and appropriately managed so the system does 
not result in costly failures.  



Software Engineering | 131 

 
 

 
 Security management: Each organization is expected to have policies to protect its 

systems and data. SQA needs to ensure that these policies are properly implemented and 
continuously give feedback to improve the policies.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



132 | Software Testing 

 

UNIT SUMMARY  
 

 Testing Preliminaries 
o Error, Fault, and Failure 
o Test Oracle 
o Verification and Validation 

 

 Testing Process 
o Requirements Analysis 
o Test Planning 
o Test Design 
o Environment Setup 
o Test Execution 
o Test Closure 

 

 Black Box Testing 
o Equivalence Class Partitioning 
o Boundary Value Analysis 
o Decision Table 
o Cause-Effect Graph 

  

 White Box Testing 
o Statement Coverage 
o Condition Coverage 
o Path Coverage 
o Function Coverage 

 

 Levels of Testing 
o Unit Testing 
o Integration Testing 
o System Testing 
o Acceptance Testing 

 

 Quality Assurance 
o Elements of Softwrare Quality Assurance 

 

 

 

 

 

 



Software Engineering | 133 

 
 

 

EXERCISES 
 

Multiple Choice Questions 
  

4.1 The difference between the expected and actual outcome of a system is termed as 
(a) Error  (b) Fault  (c) Failure   (d) Detailed design 
 

4.2 The mechanism that is used to determine whether the actual behavior confirms the expected  
        behavior of the system is  

(a) Fault  (b) Test oracle  (c) Test case   (d) Test suite 
 

4.3 The process in which the test cases are created before the development of the system with the help 
of the customer is  

 (a) Integration testing    (b) System testing 
 (c) Test First Development   (d) Acceptance testing 
 
4.4  In one of the following black box testing techniques, the input domain is divided into a finite number 

of groups 
(a) Cause Effect Graphs   (b) Decision trees 
(c) Boundary value analysis   (d) Equivalence class partitioning 
 

4.5 The structural testing technique where all predicates are tested for each of the two possible outcomes 
is  

(a) Statement coverage   (b) Condition coverage 
(c) Function coverage   (d) Path coverage 
 

4.6 The number of linearly independent paths in a program can be computed using 
(a) Number of bugs    (b) Number of faults 
(c) Cyclomatic complexity     (d) Number of failures 
 

4.7 In one of the following methods, the integration of modules is both from the top and bottom of the 
hierarchy 

(a) Top-down     (b) Bottom-up 
(c) Big-bang     (d) Sandwich 
 
 



134 | Software Testing 

 

4.8 The acceptance testing is performed by  
(a) Customer      (b) Programmer 
(c) Tester     (d) Developer 
 

4.9 When the modules of the system are integrated and tested as a single unit, then it said to be  
(a) Bottom-up integration   (b)  Big-bang integration 
(c) Top-down integration   (d)  Sandwich integration 
 

4.10 Quality control consists of 
 (a) Defect detection      (b) Defect correction 
 (c) Defect prevention     (d) Defect detection and correction 
 

Answers of Multiple Choice Questions 
4.1 (a), 4.2(b), 4.3(c), 4.4(d), 4.5(b), 4.6(c), 4.7(d), 4.8 (a), 4.9(b), 4.10 (d) 

Short and Long Answer Type Questions  
 
4.1 Differentiate between error, fault, and failure 
4.2 What are the objectives of testing? Explain the testing process. 
4.3 What is a test oracle? Why is it required 
4.4 Differentiate between black box and white box testing 
4.5 Compare and contrast (i) Verification and Validation  (ii) Test case and Test suite  
4.6  What are the guidelines for test case design? 
4.7 What are stubs and drivers? Why are they needed 
4.8 Explain levels of testing. 
4.9 What is exhaustive testing? Why is it impractical 
4.10 What is quality assurance? How is it different from quality control 
 
 
 
 
 
 
 
 
 



Software Engineering | 135 

 
 

PRACTICAL  
 
4.1 Write a program to find the largest number from a given list of n- numbers. Draw the control flow 

graph and find the cyclomatic complexity. Design test cases to compute statement, condition and, 
path coverage.  

 
4.2 Write a function to find the roots of a quadratic equation. Design test cases to perform black-box  
     testing. 
 
4.3 Design black box and white box test suite for the mini project you developed  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



136 | Software Testing 

 

KNOW MORE  
 

Software testing is a tedious activity that requires a considerable amount of effort and time. 
Manual testing is not only time-consuming and costly but is error-prone. These issues can be 
addressed if the testing activity is automated. Testing tools help in reducing the effort of manual 
testing, and the testing can be done automatically.  
 
There is no human involvement in automated testing so the testing activity can be done anytime. 
If the software has to be tested on different environments, testing tools help realize the same. This 
reduces the workforce and also reduces the error rate. 
          
Testing the quality characteristics of a system may also be difficult manually. For example, 
performance testing can be carried out without many testers and hardware. The testing tools can 
simulate the behavior of multiple users on a single machine. The process of testing, including the 
test planning and test design, can also be adequately managed using testing tools. Test reports 
can also be generated automatically, which helps assess the software system's quality.  
 
A wide range of software testing tools are available that are used to perform different types of 
testing. Functional testing tools are used to test application software and web applications. The 
application software generally involves several Graphical User Interfaces. The functional testing 
tools help test the GUI and associated functionality. These tools perform black box testing. 
 
The source code testing tools test the application software's source code. These tools 
(AutomatedQAs, Aqtime, etc.) perform white box testing. Tools can compute the statement, 
condition, and path coverage. These tools also help check whether the source codes follow the 
standard coding guidelines and practices.  
 
Performance testing tools (AutoTester's AutoController, Mercury, LoadRunner, Apache JMeter, 
etc.) are required for performance or stress testing. These tools help in simulating multiple users 
on a single machine. Java Testing Tools (Jemmy, Jmeter) are used to test Java applications.  
 
Embedded testing tools (IBM Rational Test Real Time) test embedded software that includes 
complex tasks with stringent timing requirements to realize the applications. The Bug Tracking 
Tools (Samba's Jitterbug, GNU's GNATS, Segue Software's SkillRadar) are used by test 
engineers to report bugs and track bugs until they are removed.  
 
 
 
 



Software Engineering | 137 

 
 

REFERENCES AND SUGGESTED READINGS  
 

 Sommerville, I. (2016). Software Engineering. 10th Edition, Pearson Education Limited, 
Boston 
 

 Roger S. Pressman (2010). Software Engineering: A Practitioner's Approach, McGraw-Hill 
 

 Rajib Mall (2018). Fundamentals of Software Engineering, 5th Edition, PHI Learning Private 
Limited. 
 

 Pankaj Jalote (2010). Software Engineering: A Precise Approach, Wiley-India 
 

 Srinivasan Desikan, Gopalaswamy Ramesh(2011). Software Testing Principles and Practices, 
Pearson-Education 
 

 K.K. Aggarwal, Yogesh Singh(2008). Software Engineering, New Age International 
Publishers. 
 

 IEEE Recommended Practice for Software Design Descriptions (1016-1998) 
 

 
Dynamic QR Code for Further Reading  

 

 



Software Engineering | 138 

 

 
 
 

d 

 

 

 

 

UNIT SPECIFICS  

Through this unit we have discussed the following aspects: 

 Project management Concepts; 
 Configuration management; 
 Release management;  
 Version control; 
 Change management;  
 Software maintenance;  
 Project metrics; 

 

The practical applications of the topics are discussed for generating further curiosity and creativity 
as well as improving problem solving capacity.  

      Besides giving multiple choice questions as well as questions of short and long answer types 
marked in two categories following lower and higher order of Bloom’s taxonomy, assignments, a 
list of references and suggested readings are given in the unit so that one can go through them for 
practice. It is important to note that for getting more information on various topics of interest some 
QR codes have been provided in different sections which can be scanned for relevant supportive 
knowledge. 

      After the related practical, based on the content, there is a “Know More” section. This section 
has been carefully designed so that the supplementary information provided in this part becomes 
beneficial for the users of the book. This section mainly highlights the initial activity, examples of 
some interesting facts, analogy, history of the development of the subject focusing the salient 
observations and finding, timelines starting from the development of the concerned topics up to the 
recent time, applications of the subject matter for our day-to-day real life or/and industrial 
applications on variety of aspects, case study related to environmental, sustainability, social and 
ethical issues whichever applicable, and finally inquisitiveness and curiosity topics of the unit. 

 

5           Project Management           



Software Engineering | 139 

 
 

RATIONALE  

 
Software development is a time-bound activity, where the software is expected to be delivered 
within time, given budget, and satisfying the desired quality characteristics. The software 
development activity must be properly planned, managed, and controlled to develop a quality 
product within time and budget. Project management is a discipline that helps manage the 
project's progress to achieve the desired specific, measurable, achievable, realistic, and time-
bound outcome. In order to realize these goals, a project manager is expected to plan, control, 
and monitor each software development activity. 
 
According to a recent survey by Project Management Institute, 45% of projects miss delivery 
dates, 38% of projects miss budget targets, 27% fail to meet organizational goals, and 34% of 
projects' scope gets changed. The responsibility of a project manager includes planning, 
organizing, budgeting, managing tasks, and controlling costs using tools and techniques.  
 
A software project often goes through changes during development and after the delivery of the 
software to the customer. Hence, there is a need to manage the changes systematically. The 
various artifacts produced during software development, like requirements specification, 
software design document, source code, and user manual etc., are developed and modified by 
various people involved in the project development. Software Configuration Management (SPM) 
tracks and manages the state of these artifacts.  
 
The customer may request changes in software during the development or after the deployment 
of the software. The systematic approach to modify the software after its delivery is software 
maintenance. These changes have to be managed and tracked. Change management is the 
systematic approach to managing, controlling, and adapting changes. There may be various 
versions of the artifacts during the development and even after software delivery. Version control 
is the systematic approach to tracking and managing various versions of artifacts of the given 
software system.  
 
This unit helps students to understand software project management activities. This includes 
software planning, configuration management, version control, change management, 
maintenance, and metrics. 

       

PRE-REQUISITES  

Computer Programming (Diploma Semester-III) 
Scripting Languages (Diploma Semester-III) 



140 | Project Management 

 

UNIT OUTCOMES  

List of outcomes of this unit is as follows: 
U5-O1: Understand the project planning activities.  
U5-O2:  Apply techniques for effort estimation and scheduling 
U5-O3: Understand software configuration management 
U5-O4: Understand software maintenance and change management activities 
U5-O5:  Understand the software metrics.  
 

Unit-5 
Outcomes 

EXPECTED MAPPING WITH COURSE OUTCOMES 
(1- Weak Correlation; 2- Medium correlation; 3- Strong Correlation) 
CO-1 CO-2 CO-3 CO-4 CO-5 

U5-O1 2 2 1 1 3 
U5-O2 2 2 1 1 3 
U5-O3 2 2 1 1 3 
U5-O4 2 2 1 1 3 
U5-05 2 2 1 1 3 

 

  

 
5.1 Project Management Concepts 

     

Software development aims to produce quality products within the allocated time and budget. As 
there could be various issues during the development process, it is indispensable that each activity 
of the development has to be managed, tracked, and controlled. Project managers add value to 
the organization by interacting and communicating with all stakeholders to ensure that the end 
product is high quality. Software project management is a systematic approach to ensuring quality 
in software development in terms of cost, schedule, and customer satisfaction. Many software 
projects are not realized successfully, and those completed are out of planned timelines, incurring 
higher costs than planned and to customers' dissatisfaction. The lack of software quality is due to 
inadequate project management.  
 
According to the various scientific studies (KPMG 1995; The Standish Group 1995; Jones 1996; 
Putnam and Myers 1997; Pressman 1997; Royce 1998), there are three main reasons for the 
failure of software projects. This includes inadequate project planning, project management, and 
methods unsuited for software projects. 
 
 
 



Software Engineering | 141 

 
 

5.1.1 The Management Spectrum 
 

The four essential components of project management are People, Product, Process, and Project.  
 
 People: A successful team's involvement makes any project's success possible. The team's 
collective effort will lead to delivering a quality product within defined time limits and an 
assigned budget. Various stakeholders are required for the successful realization of projects. This 
includes the customer, project leader, project manager, and software team. The software team 
comprises analysts, architects, designers, programmers, and testers. The project manager needs 
to coordinate and communicate with all stakeholders, from initiating to delivering the product.  
  
 Product: The final artifact of the software development is a product. The product objectives 
and scope need to be defined before planning the project. The stakeholders interact in finalizing 
the objectives and scope. Objectives indicate the goals of the product as per the customer's need. 
The scope identifies the desired characteristics, functions, and behaviour that are desired from 
the product. Once the objectives and scope are adequately understood, complete, and 
unambiguous, several alternative solutions are required to implement the desired functionality. 
The complexity of the desired functionality can be reduced by partitioning the system into several 
manageable units. These alternative solutions help the project managers to select an appropriate 
solution based on the given constraints. The constraints could concern delivery time, budget, 
resource, and human resources availability etc. 
  
 Process: A Software process defines the set of activities that helps in developing software. 
These activities mainly apply to all software projects, irrespective of their complexity and size. 
However, the appropriate team selects a particular process model to develop the software by 
considering the given constraints. Once the process model is selected, a preliminary project plan 
is established, which will be refined further. Each functionality of the project is listed. These 
activities help the project manager estimate the schedule, cost, and resources required to realize 
the same.  
  
 Project: According to a recent survey by Project Management Institute, about 27% of projects 
were successful, were realized within the planned schedule and cost, and achieved the desired 
quality objectives. 45% of projects experience time overruns, and about 38% experience cost 
overruns. To manage a project, knowing which problems can be avoided is imperative.  
 
 
 
 
 



142 | Project Management 

 

There are several reasons for failing to achieve the desired software quality within a specified 
time and budget. This includes the following: 
 

 Incomplete, ambiguous, and inconsistent requirements. 
 Unrealistic deadlines 
 Incorrect scope defined 
 Lack of people with appropriate skills 
 Poor change management 

 
A project manager is responsible for guiding the team and ensuring that the project's progress is 
within the defined scope and meets the given deadlines. A project manager is expected to 
communicate with the team and make appropriate decisions for the successful realization of the 
software. The functionalities of a project manager can be broadly classified into two categories: 
(i) Planning (ii) Monitoring and Control. 
 
5.1.2 W5HH principle 
Boehm [1996] suggested a mechanism that helps identify proper objectives, deciding schedules, 
resources, and milestones. The W5HH principle is used to identify the critical project 
characteristics and thereby helps in realizing a project plan. 
 

 Why is the system being developed?   
The need for development of the software needs to be assessed by the stakeholders. 
Furthermore, the feasibility of developing the system economically, technically and 
operationally has to be assessed. 
 

 What will be done?    
The features of the desired system have to be listed, and the specific tasks are defined. 
This helps in defining the scope of the project. 
 

 When will it be done?   
The project schedule is established by estimating the schedule of each of the tasks of the 
system.  
 

 Who will be responsible?  
The responsibilities of each member of the software team are defined. The project 
manager assigns responsibilities based on the project and teams strengths. 
 

 Where are they located? 
Not all stakeholders may reside in one place. Furthermore, the software team may also 
be geographically distributed.  
 



Software Engineering | 143 

 
 

 How much of resources is needed?   
Based on the scope and features identified, one has to estimate the human resources and 
other resources required for development of the system. 
 

 How will job be done technically and managerially?   
A management and technical strategy for developing the project is defined as the product 
scope is established.  

 
 
5.2 PROJECT SIZE ESTIMATION METRICS 
 
Planning is the primary step in project management activity. If there is no proper plan, it isn't 
easy to monitor or control the project's progress. Lack of adequate planning may fail the project 
as no effort, schedule, or resource estimates are available. Planning aims to identify the activities 
required to implement the project successfully. Scheduling of activities and identification of 
resources to realize each activity is to be identified by considering the given constraints.  
 
Once the feasibility of a system is assessed, project objectives and scope are clearly defined, and 
the project planning is undertaken before starting the development process. The primary activities 
of project planning and management are: 
 

 Estimation: This includes an assessment of the cost and effort required for the 
development of software and the time taken to develop the software.  

 Scheduling: It specifies project tasks, their durations, and dependencies. 
 Staffing: The organization of a team and selection of the proper set of people for the 

given tasks need to be identified based on the need.  
 Risk Management: Risk engineering that includes risk identification, analysis, and risk 

aversion strategies must be planned.  
 Configuration management, release, and change management activities should be 

planned. 
 
Size is the fundamental input based on which other estimates are dependent. Size is an input to 
compute the effort required to develop the project and the duration of development. The cost of 
the project is computed as a function of effort estimation. The estimated cost helps in negotiations 
of the actual price with the customers. Staffing and scheduling of activities are possible once the 
assessments are made.  
 
As planning is a critical activity, wrong estimates may lead to delays in the delivery of projects, 
and the project may also fail. Project managers often refine the plan regularly because the clarity 
increases as the project progresses.   



144 | Project Management 

 

Precise project size estimation helps accurately estimate the effort, time duration, and project 
cost. Lines of Code and Function points are the two fundamental techniques to estimate the 
project size. Each method has its advantages and disadvantages. 
 

5.2.1 Lines of Code (LOC) 
 

LOC is a metric that measures the size of the project by counting the number of lines of code 
in the program. The comments and headers, if any, are ignored while calculating the number 
of lines. The number of lines of code is also known as Delivered Source code Instructions (DSI) 
or Source Lines of Code (SLOC).  
  
LOC can be easily determined at the end of the project. However, LOCs have to be estimated 
before the start of the development to estimate effort, time, and cost. Generally, LOC is 
estimated based on experience and a calculated guess. Project managers also count the number 
of lines of code by decomposing the problem into various modules. Each module can be further 
decomposed until the number of lines of code at the lower level can be estimated. By using the 
estimate of all leaf levels, the project's total size is estimated.  
  
LOC measure has several disadvantages. There can be different ways to write code for the same 
logic. For the same problem, the number of lines of code may vary. An instruction can also be 
written in multiple lines, which can be addressed by counting language tokens. Secondly, LOC 
only considers the source lines of code but doesn't consider the effort required for analysis, 
design, testing, etc. The design may require extra effort due to the problem's complexity, but 
the number of source lines is fewer or vice versa. In such cases, size estimation may not 
precisely represent the actual effort. Thirdly, the LOC measure only counts the number of lines 
of source code and doesn't consider the code quality. The programs may be lengthy sometimes, 
but the code must meet the quality requirements. 
Further, the number of lines of code will be fewer when high-level programming languages are 
used for coding. The number of lines of code for the same logic may also differ from one 
programming language to the other. Therefore, the LOC metric is not a feasible measure to 
estimate the size of the project as the effort, cost, and time estimates have to be done before the 
development begins.  

 
5.2.2 Function Point (FP) 
 
Function Point metric proposed by Albrecht [1983] addresses the drawbacks of the LOC measure. 
In contrast to the LOC measure, the function point technique estimates the project size from the 
requirements specification. In function point metric, the size of a project is estimated based on 
the number of features of the given system. The size of the system depends on various factors. A 
system is composed of several functions. Each function takes inputs and produces output. A 
system's inputs and output values help determine the number of functionalities. Furthermore, the 
size depends on the number of files and interfaces required to store and retrieve the data to realize 
a function.  
  



Software Engineering | 145 

 
 

The function point approach uses five parameters: external inputs, external outputs, internal files, 
interfaces, and inquiries. These parameters capture the functionality of the system. Two elements 
of the same type may have different levels of complexity. The complexity of each parameter can 
be classified as Simple, Average, or Complex. 
  
The unique input to the application from external sources like input screens, external databases, 
external files, etc., is counted as external inputs. Similarly, each output that leaves the system 
boundary is counted as an external output. External output can be messages, files, or log reports. 
The number of user inquiries that require a specific response from the system is counted. Each 
application maintains information to perform functionality. A function may read data from a data 
store, process it, and update the output back in the data store. This file, which maintains records, 
is counted as an internal file. The external files are the files that are shared between applications. 
  
The function point is calculated using the following steps. 
  
Step 1: Compute the count of all five parameters, namely external inputs, external outputs, 
inquiries, internal files, and external files. 
  
Step 2: Assign the complexity of each element in a given parameter. (Two elements of the same 
type may have different complexity). Function point parameters and their complexities are 
specified in Figure 5.1 
 
 

Type Simple Average Complex 
External Inputs (EI) 3 4 6 
External Outputs (EO) 4 5 7 
Inquiries (I) 3 4 6 
Internal Files (IF) 7 10 15 
External Files  (EF) 5 7 10 

Fig. 5.1: FP Analysis parameters and weighing factors 
 
Step 3: Compute the Unadjusted Function Point (UFP) as a weighted sum  
 
   

ܲܨܷ =  Wij. Cij
ଵஸ  ஸ ହ
ଵஸ  ஸ ଷ 

 

 
Wij represents the weight of an element of type i and complexity j 
Cij represents the count of the number of elements of type i classified as having weight 
corresponding to column j. 



146 | Project Management 

 

 
Step 4: Compute Complexity Adjustment Factor (CAF). UFP is adjusted with 14 characteristics 
that influence the development effort. The 14 characteristics are data communications, distributed 
processing, performance objectives, operation configuration load, transaction rate, online data 
entry, end-user efficiency, online update, complex processing logic, reusability, installation ease, 
operational ease, multiple sites, and facilitate change. Each factor is assigned a value from 0 (not 
present or no influence) to 5 (strong influence).  
 

ܨܣܥ = 0.65 + 0.01 ∗  ݂݅
ଵସ

ୀଵ

 

 
 CAF ranges from 0.65 to 1.35. 
  
 Step 5: Compute Function point  
   FP = UFP * CAF   (FP can differ from UFP at most by 35 %) 
 
 There is a correlation between the function points and the size of the software. This depends 
on the programming language used. According to several studies in literature, one function point is 
estimated as 125 lines of code in C language and 50 lines of code in Java or C++.  
    

Example: For a given application, let the count of five parameters be EI=20 (simple), EO=12 
(Average), I = 7 (Complex), IF=5 (Average), EF=4 (Complex). 
 
Then UFP = (20 * 3) + (12 * 5) + (7 * 6) + (5 * 10) + (4 * 10) = 252 

 
Assume that all 14 parameters have average influence (3) in the given project, then 
 CAF = 0.65 + 0.01 (14*3) = 1.07.  
 
In the given example, FP = 252 * 1.07 = 269.64 (In this case, the UFP is adjusted by 7%) 
 
 Assuming that the application is to be developed in C language, each function point is 
expected to take 125 LOC, then the size of the project = 269.64 * 125 = 33705 LOC=33.705 KLOC. 
  
 The function point approach is computed subject to complete, consistent, and unambiguous 
requirements. The function point metric does not consider the complexity of the algorithm. It assumes 
that the effort required to design, develop, and test functionalities is the same. To overcome this 
problem, the feature point metric, an extension to function point, is proposed. The function point 
metric additionally considers algorithm complexity.  
 



Software Engineering | 147 

 
 

5.3 SOFTWARE PLANNING 
 

 Once the size of the project is estimated, it is desirable to estimate the cost of the software and 
the time taken for the development. These estimates are required before the development begins. 
The project manager will use the cost and schedule estimates to realize monitoring and control 
activities. The major part of the software development cost is the staffing requirement. Most 
estimation techniques estimate effort as a unit of person-months (PM). The other costs, including 
the cost of software, hardware, and other resources, are included to estimate the project's total 
cost. These estimates also help in resource planning and scheduling.  
 
 

5.3.1 Effort Estimation: COCOMO 
 
The effort can be estimated in the bottom-up estimation technique if the size of the project is 
calculated accurately. The steps to be followed in the bottom-up estimation approach are as 
follows: 
 

 Determine modules of the system and estimate the size of each module 
 Determine the initial effort of each module (as a function of LOC) 
 Determine the effort multipliers of each module 
 Adjust the effort by multiplying the initial estimate with the effort adjustment factor 

(product of effort multipliers) 
 Estimate the time for development, which is a function of effort. 
 Estimate the cost of the project.  

  
 Constructive Cost Model (COCOMO) was proposed by Boehm (1981). As the effort varies from 

one type of project to another, software development projects can be divided into three categories. 
This includes Organic, Semi-detached, and Embedded. The three categories correspond to 
application, utility, and system projects, respectively. Additionally, organic-type projects are 
generally applications with a clear understanding of requirements, smaller projects, and involving 
an experienced team that develops projects in a similar domain. In semi-detached mode, the team 
involved experienced and inexperienced staff. In embedded-type projects, there is a strong 
correlation between the software being developed and the hardware. According to Boehm, the 
cost estimation is done in three stages: Basic COCOMO, Intermediate COCOMO, and Advanced 
COCOMO. 

 
 In Basic COCOMO, the effort is computed as a function of the number of thousand lines of code 

(KLOC). The following expressions estimate Effort and Time for Development (Tdev). 
 
 



148 | Project Management 

 

= ݐݎ݂݂ܧ  ܽ ∗ (ܥܱܮܭ)    ܯܲ  
ݒ݁݀ܶ =  ܿ ∗ ௗ (ݐݎ݂݂ܧ)    ݏℎݐ݊ܯ 

 
 Where   KLOC is the size of the software product expressed in Kilo Lines of Code 
    a, b, c, d are constants of each category of the software project (Figure 5.2) 
    Effort is the effort required to develop the software, expressed in person-months (PM)     
             Tdev is the estimated time for the development of software, expressed in months  

 
System             a b c d 
Organic  2.4 1.05 2.5 0.38 
Semi-detached 3.0 1.12 2.5 0.35 
Embedded 3.6 1.20 2.5 0.32 

Fig. 5.2: Constant values for various systems to compute effort and Time 
 
 Example: The size of a given organic mode system is 35000 lines of code. Let the average salary 

of the developer be Rs. 30,000/= per month. Determine effort required to develop the software, 
time for development, and development cost. Assume that total overhead constitutes Rs. 1, 
00,000/= 

  
 As the project is of organic type, the constant values are a=2.4, b=1.05, c=2.5, d=0.38 
 Effort = 2.4 * (35)1.05 = 100.34 PM 
 Tdev = 2.5 * (100.34)0.38 = 14.4 months. 
  
 Cost of the project = (Effort * Salary of developer) + overhead cost 
                                = (100.34 * 30000) + 100000 
                                = Rs. 31, 10, 200/= 
 
 
 Number of Developers = Effort/Tdev = 100.34/14.4 = 6.96 ≈7 persons 
 
 
 In basic COCOMO, the effort and time for development are functions of the number of lines of 

code only. However, the effort depends on various other factors. If the complexity is high, then 
the effort needs to be more. Similarly, if the developers are experienced, then their salary might 
be high, and so on. The Intermediate COCOMO model considers the effort multipliers to adjust 
the initial effort computed using the number of lines of code. These effort multipliers are 
classified into four broader groups: Product, Computer, Personnel, and Project attributes. A total 



Software Engineering | 149 

 
 

of 15 attributes (effort multipliers) are assigned values based on their complexities (Fig. 5.3). The 
Effort Adjustment Factor (EAF) is the product of all effort multipliers (Ei) 

 

ܨܣܧ =  ෑܧ

ୀଵହ

ୀଵ

 

 
Cost Drivers Rating 

Very Low Low Nominal High Very High 
Product Attributes 

Required Reliability 0.75 0.88 1.00 1.15 1.40 
Database Size -- 0.94 1.00 1.08 1.16 
Product Complexity 0.70 0.85 1.00 1.15 1.30 

Computer Attributes 
Execution Time -- -- 1.00 1.11 1.30 
Storage constraint -- -- 1.00 1.06 1.21 
Virtual machine volatility -- 0.87 1.00 1.15 1.30 
Turnaround time -- 0.87 1.00 1.07 1.15 

Personal Attributes 
Analyst capability 1.46 1.19 1.00 0.86 0.71 
Application experience 1.29 1.13 1.00 0.91 0.82 
Programmer capability 1.42 1.17 1.00 0.86 0.70 
Virtual machine 
experience 

1.21 1.10 1.00 0.90 -- 

Prog language experience 1.14 1.07 1.00 0.95 -- 
Project Attributes 

Modern progr. Practices 1.24 1.10 1.00 0.91 0.82 
Use of Software tools 1.24 1.10 1.00 0.91 0.83 
Development schedule 1.23 1.08 1.00 1.04 1.10 

Fig. 5.3: Effort multipliers for different cost drivers 
 
 The resultant effort is computed as a product of the initial effort estimate and the Effort 

Adjustment Factor (EAF) 
Effort (E) = E initial * EAF 

  
 
 
 



150 | Project Management 

 

Example: The size of a given embedded mode project is 38000 lines of code. Let the average 
salary of the developer be Rs. 30,000/= per month. Determine the effort required to develop the 
software, time for development. Consider the cost drivers: RELY=0.88, DATA=1.08, CPLX= 
1.30, TIME=1.30, STOR=1.21, and all other cost drivers as nominal (Effort multiplier=1).  

  
 As the project is of organic type, the constant values are a=3.6, b=1.20, c=2.5, d=0.32 
 Effort initial = 3.6 * (38)1.20 = 78.66 PM 
 EAF = 0.88 * 1.08 * 1.30 * 1.30 * 1.21 * 1 = 1.94 
 Effort = Effort initial * EAF = 78.66 * 1.94 = 152.6 PM 
 Tdev = 2.5 * (152.6)0.32 = 12.5 months. 
 Number of Developers = Effort/Tdev = 152.6/12.5 = 12.2 ≈12 persons 
 
 The drawback of the intermediate COCOMO model is that it considers the software as a single 

entity. The effort multipliers are the same for the entire project. Practically, the complexity of 
each module or activity may vary. Further, many large systems are composed of sub-systems, 
and each sub-system's complexity may differ. The Advanced COCOMO model is similar to 
intermediate COCOMO. However, it estimates the size of each module or activity. The effort 
multipliers for each activity or module are assessed to compute the effort and time for the 
development of each module. The sum of the efforts of each module is computed to estimate the 
effort for the development of the system. Similarly, the total time for development is estimated. 

 

5.3.2 Project Scheduling and Staffing 
 
Once the effort is estimated, the schedule, which indicates the project's duration, is estimated.  
The resources (human resources) required to develop the project are also estimated.  In the 
COCOMO model, once effort and time for development are computed, the number of people 
required to develop the project can be evaluated.  If a project effort is 72 person-months and the 
total schedule is nine months, then eight people are required for development.  A schedule of 
eight months with nine people is also possible.  However, the manpower and time duration are 
not entirely interchangeable. For example, it may not be possible to complete the project in one 
month by employing 72 people.  

  
The total duration of the project, estimated using the effort and time for development parameters, 
may not help the project managers manage and control various project activities.  This is because 
the schedule of various project activities is not estimated.  However, the overall schedule helps 
in deciding the project's delivery time. 
 
 
 
 



Software Engineering | 151 

 
 

Work Breakdown Structure (WBS) divides the system into activities. The project manager may 
decide on these activities based on the manpower available and their core strengths in realizing 
these activities.  A general format of work-break down structure is given in Figure 5.4 
 

Task 
Name 

Duration Predecessor 
task 

Expected Manpower Other 
Resources 

    Actual  
Start 
Date 

End 
Date 

Start 
Date 

End 
Date 

Fig. 5.4: Work Breakdown Structure 
 
The task name specifies the activities and tasks identified by the project manager. The duration 
of completion of each task is estimated. The predecessor task is the task which has to be 
completed before the current task begins. This helps to know the dependencies between the tasks. 
The project manager estimates the expected start date and end dates base don the duration. It can 
be in weeks, hours, or minutes as well. The manpower or the personnel responsible for executing 
the task is also identified. Any other resource requirements to execute that task are also identified. 
In order to manage and control the activities, the project manager needs to look at the actual start 
and end date. In case of a delay, the project manager is expected to communicate with the team 
to see that there are no further delays. Sometimes, the slack (extra time) available because of 
dependency will help in manage the delays.  
 
A project manager is expected to follow the following activities for scheduling the project tasks 
 

 Identify tasks required in the project 
 Divide the tasks into activities 
 Identify the dependency, if any, between different tasks 
 Estimate the time duration to complete each task 
 Allocate resources to each task/activity 
 Plan the expected start date and end date of each activity 
 Determine the critical path.  

 
Consider a sample WBS given in Figure 5.5 

Task Name Duration 
(days) 

Predecessor Expected Resources 
Start Date End Date 

T1 10 - 1st Sept 10th Sept  
T2 6 T1 11th Sept 16th Sept  
T3 3 T2 17th Sept 19th Sept  
T4 11 T3 20th Sept 30th Sept  
T5 7 T3 20th Sept 26th Sept  
T6 4 T4  , T5 1st Oct 4th Oct  
T7 6 T6 5th Oct 10th Oct  

Fig. 5.5: Work Breakdown Structure example 



152 | Project Management 

 

 WBS representation can be represented as an activity network that represents activities identified 
in WBS as nodes and their dependencies as the edges. The activity network representation of 
Figure 5.5 is given in Figure 5.6 

   

 
Fig. 5.6: Activity network representation of Fig. 5.5 

 
 The following analysis can be made on the activity network representation  
 

 The minimum time (MT) required to complete the project is the maximum of all paths 
from beginning to end.  

MT = 10 + 6 + 3 + 11 + 4 + 6 =40 days 
 

 The Earliest start time(EST) of a task Ti is the maximum of all paths from the starting 
node to Ti. 
 

 Early Finish time (EFT) is the sum of the earliest start time and duration of the task. 
 

 The Latest Start time (LST) is the difference between the minimum time (MT) and 
maximum of all paths from the current task to the end.  
 

 The Latest Finish time (LFT) of a task can be obtained by subtracting the maximum of 
all paths from this task to finish from MT. 
 

 Slack Time (ST) is the time that delays a task without delaying the project.                       
ST = LFT-EFT 
 
 
 
 
 
 



Software Engineering | 153 

 
 

 
 
 

Task Name EST EFT LST LFT ST 

T1 0 10 0 10 0 
T2 10 16 10 16 0 
T3 16 19 16 19 0 
T4 19 30 19 30 0 
T5 19 26 23 30 4 
T6 30 34 30 34 0 
T7 34 40 34 40 0 

Fig. 5.7: Critical path analysis of Fig. 5.6 
 
 Critical paths are the paths whose duration is equal to the minimum time (MT). The Critical path 

of Fig 5.6 is T1-T2-T3-T4-T6-T7. 
Gantt charts are used in resource planning. Each activity has to be associated with resources. 
Gantt chart is a type of bar chart where the bar represents an activity shown along a time line. 
Project managers use Gantt chart for resource monitoring and control.  Gantt chart representation 
of Fig 5.5 is shown in Fig. 5.8. 

 
Fig. 5.8: Gantt chart representation of Fig. 5.5 



154 | Project Management 

 

 
5.4 SOFTWARE MAINTENANCE 
 

Modifications made to software product after its delivery to the customer is referred to as software 
maintenance. Maintenance is generally needed when certain failures are reported while using the 
system, specific changes are required in existing requirements, or a new functionality must be 
incorporated. The effort required to modify a system also needs to be computed. Whenever 
software is adapted to new environments, changes are needed.  

 

    5.4.1 Types of Software Maintenance 
 
Software maintenance is broadly classified into three categories: 
 

 Corrective maintenance: The changes to the software are requested to fix the bugs that 
are identified while using the system. Generally such requests are about 20% of the total 
maintenance requests. 
 

 Adaptive maintenance:  The changes to the software are needed when the customer wants 
to run the software on new platforms on new operating systems or when it requires 
interfacing with other devices. Such requests are about 25% 
 

 Perfective maintenance: In perfective maintenance, customers request changes in 
system functionalities, and the changes are also requested when new functionalities or 
features are to be added to the existing system. Such requests are about 55%.  

      
5.4.2 Software Maintenance Process 
 
The activities for maintenance or change requests depend on several parameters. This includes 
the resources required for maintenance, expected side effects due to changes to the system etc. 
Adaptive or perfective maintenance requires a systematic approach to make changes to the 
software.  
There could be multiple requests for modifications to the given software. There is a need to 
manage and track these changes. The change requests must be analyzed carefully before initiating 
the maintenance process. Only if the changes are valid, then the maintenance cycle should 
commence.  
The set of activities for modifying a project varies widely depending on the type of the project. 
If the changes are minimal, then the following set of activities can be followed for making 
changes to the project. 
 



Software Engineering | 155 

 
 

 
 Get change request: In this step, the change requirements are collected. 
 Analyze the change request: The changes are analyzed, and the feasibility of the 

requested modification is assessed. 
 Decision on change request acceptance: A modification request id (MRi) is assigned 

if the change request is accepted. This is used to manage and track the changes. 
 Plan Change: The effort, time, cost required for maintenance is estimated. 
 Design and implementation: The requested changes are designed and implemented 
 Integration: The tested modifications are integrated with the existing system 
 Regression testing: The testing that is performed after making changes to the system 

is regression testing. It has to be ensured that new modifications are implemented and, 
at the same time, existing modifications should not be affected. 

 Update documents: The software assets, such as SRS, Design documents, and test 
reports, must be updated with the changes. Once maintenance activity is completed, 
the maintenance request is closed.  
 

The above activities are possible if the same team has taken the modification request that has 
developed the system. However, if the team that has taken the change request is a different team, 
then there is a need to get insight into the existing system before the change request is initiated. 
This is possible through reverse engineering, where the source code is translated to design to 
understand the existing system. Then, the change request is considered, and the above-stated steps 
are followed to make changes to the system. 
 

     5.4.3 Maintenance cost estimation 
 
The maintenance cost varies from one project to another. According to Boehm (1981) the 
maintenance cost estimation depends on the Annual Change Traffic (ACT) parameter.  
 

ܶܥܣ =  
ௗௗௗܥܱܮܭ + ௗ௧ௗܥܱܮܭ 

௧௧ܥܱܮܭ
 

 
Where KLOC added is the KLOC added during the change process 
           KLOC deleted is the total KLOC deleted during the change process 
  
The maintenance cost is estimated by multiplying the annual change traffic (ACT) with the 
development cost.  
ݐݏܿ ݁ܿ݊ܽ݊݁ݐ݊݅ܽܯ    = ܶܥܣ ∗  ݐݏܿ ݐ݈݊݁݉݁ݒ݁ܦ
The maintenance estimation technique only gives an approximate cost, as the cost drivers and 
other resource costs are not considered in estimating maintenance costs. 



156 | Project Management 

 

 
5.5 SOFTWARE CONFIGURATION MANAGEMENT 

 
 Changes to software systems are common as most of the development work is on maintenance. 

The software development artifacts consist of SRS, software plan, software design document, 
source code, test suites, user manuals etc. Whenever some changes are incorporated, the state of 
these documents changes. The state of all the artifacts of the software system at any point in time 
is referred to as configuration of the software product.  

  
 Software Configuration Management (SCM) or change management represents a set of activities 

to track, control, and manage changes by identifying the artifacts that are likely to change, 
specifying mechanisms to manage different versions of the system, and auditing and reporting on 
the changes done. A hierarchy of software configuration items (SCI) is created as software is 
being developed. SCI can be as small as a use case diagram or as large as a software design 
document. Changes to SCI may happen at any time.  

 
 Change to a software system may happen because of the following reasons 

 Budget, resource, or schedule constraints require change in the scope of the system 
 Business or market economic conditions may need changes to the system 
 The users of the system may request modifications to the system. 
 Changes may also happen because of a feature being introduced by a competitor. 

 

          5.5.1 Software Configuration Management Process 
 

The Software Configuration Management (SCM) tools help the project manager to track various 
artifacts. This will help the Project Manager identify any artifact’s current state. The configuration 
management tools help the developer to perform changes to the system in a controlled manner. 
Examples of configuration management tools include GIT, Ansible, CFEngine etc. SCM process 
specifies a series of tasks for different artifacts of software. This includes 

 Configuration identification 
 Change Control 
 Version Control 
 Auditing 
 Reporting 

 
In the configuration identification phase, the software configuration items are identified. During 
this process, two types of objects are identified. A basic object is an SCI that is created during 
requirements engineering, analysis, design, implementation, or test. An object can be a part of 
requirements specification or a part of design, function of a module, or a test case. The collection 
of basic objects forms an aggregate object. In the configuration identification phase, aggregate 



Software Engineering | 157 

 
 

objects include the Architectural model, Data model, Component etc.  Each object identified has 
features that include its name, description, characteristics, and resources. Object resources include 
functions, data types etc. The configuration identification phase also considers the relationships 
that exist between objects. The changes to these objects require monitoring and control to ensure 
that changes to a system happen without any side effects.  
 
Changes to SCIs need to be managed and controlled. Several change requests are received, but it 
has to be analyzed whether the changes are desired. The change control process is depicted in 
Figure 5.9 

 
Fig. 5.9: Software Configuration Management Process 



158 | Project Management 

 

The stakeholder submits a change request. The developer evaluates the modification requested to 
assess the foreseen side effects because its impact on configuration objects and estimates the 
effort for performing the changes. If it is feasible to proceed with the changes, the request is 
submitted to the change control authority (CCA), which decides whether to proceed with the 
changes. An ECO (Engineering Change Order) or Modification Request id (MRi) is generated 
for each such request. The changes are made and reviewed. The affected configuration items due 
to the change are added to the repository with appropriate versioning. Testing for the desired 
changes is done, followed by regression testing, which needs to ensure that the side effects due 
to the change do not exist or are minimized. The version of the product is decided and the CCA 
reviews the final artifact. After approval of CCA, the new version is distributed and the request 
is closed.  
 
Version Control: As the various activities of software are being developed, several versions of 
configuration items are created. A repository is to be maintained that keeps track of all versions 
of configuration items. This will permit developers to review earlier releases during testing. A 
version control specifies the procedures and tools that can manage different versions of 
configuration items. The following are the characteristics of a version control system. 

 Maintains a project database that stores software configuration items 
 Changes to each configuration item are maintained as different versions in the database. 
 Make facility that helps the development team use existing relevant configuration items 

and develop a functionality that can be reused. 
 The bug tracing feature enables us to document issues with each configuration item. 

 
If the characteristics of a software configuration item (SCI) are maintained in the database along 
with reasons for change, then it helps in the effective reuse of existing artifacts. This is achieved 
by using a software configuration management tool.  
 
Configuration audit is required to ensure that the requested changes are properly realized. A 
software configuration audit assesses characteristics that are not considered during technical 
review of the configuration items. The audit expects conformance to following parameters 

 Whether the changes specified in modification request are implemented 
 Any other modifications are incorporated 
 Whether technical review of suggested changes is conducted 
 Whether the related software configuration items are updated. 
 Whether proper versioning for each SCI is specified and is updated in the repository. 

 
Reporting or Configuration status accounting provides accurate information about the software 
product and its associated configuration elements. It is to ensure that the historical status of 
configuration items and versioning are correctly maintained and can be traced. It also keeps track 
of what changes have been done by whom, when, and where.  
 



Software Engineering | 159 

 
 

5.5.2 Release Management 
 

Release management is a process of planning, scheduling, monitoring, and controlling software 
releases. It must ensure that different software releases are delivered to the customer per the 
release plan.  
 
Release management starts with a request to develop new software or to make changes to the 
existing system. Every request cannot be translated to a new release, so its feasibility is evaluated. 
After ensuring that the system is feasible to develop, the most essential activity is to plan the 
release.  
 
In release planning, the builds or deliverables are planned. This depends on the type of 
development methodology adopted. In incremental and rapid application development 
approaches, several software releases exist. In agile methods, the Product backlog specifies 
various stories and their tasks. Once the sprint is developed and tested, it is ready for release. 
Each task of the sprint is planned. The time taken for each task, resources required, and the 
priority are planned. The release management process must ensure that the sprints are released 
per the sprint plan. Several versions of releases need to be maintained and monitored. The 
advantage of release management is that as the builds are maintained, any new system must not 
start from scratch. The existing releases can be modified to deliver the quality product within 
time and budget. A release is successful if deployed within the estimated time and budget and 
satisfies the customer's needs.  
A generic release plan for a system that is released using agile methodology is specified in Figure 
5.10 
 

Task Name Priority Time 
(in days) 

Resources 

Sprint 1 High 5  
Task 1 Medium 2  
Task 2 Medium 2  
Task 3 Medium 1  

Sprint 2 Medium 13  
Task 4 Medium 4  
Task 5 Low 6  
Task 6 Medium 3  

Fig. 5.10: Sample Product Backlog 

 
 



160 | Project Management 

 

 In Fig 5.10, there are two sprints. Sprint-1 is of high priority and is expected to be released first. 
For each task, the priority and time are estimated. The total estimated time for story 1 is five days. 
The story-1 is expected to be released in 5 days. If sprint-2 depends on sprint-1, it will be released 
in the next 13 days. However, multiple teams can also work on several sprints. In such a case, the 
release plan needs to be modified. Some agile approaches, like extreme programming (XP), use 
a test-first development (TFD) approach. The release management process needs to ensure that 
the acceptance test cases planned for each task in the release are successful before testing the 
entire sprint. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 



Software Engineering | 161 

 
 

 
UNIT SUMMARY  
 

 Project Management Concepts 
o The Management Spectrum 
o W5HH Principle 

 

 Project Size Estimation Metrics 
o Lines of Code (LOC) 
o Function Point Model 

 

 Software Planning 
o Effort Estimation: COCOMO 
o Project Scheduling & Staffing 

 
 Software Maintenance 

o Types of Software Maintenance 
o Maintenance process 
o Maintenance cost estimation 

 

 Software Configuration Management 
o Software Configuration Management Process 
o Release Management 

 
 

 

 

 
 

 

 

 
 

 

 
 

 

 

 

 



162 | Project Management 

 

 

EXERCISES 
 

Multiple Choice Questions 
  

5.1 The unit of effort is 
(a) Days (b) Months  (c) Hours  (d) Person-months 
 

5.2 The metric which considers algorithm complexity while estimating the size is  
(a) Feature point (b) Function point (c) KLOC  (d) KDSI 
 

5.3 In one of the following COCOMO models, effort is estimated as a function of the number of kilo 
lines of code 

 (a) Basic  (b) Intermediate  (c) Detailed  (d) Advanced 
 
5.4  In an activity network representation, the time required to complete the project is given by 

(a) Minimum time (MT) 
(b) Latest Finish time (LFT) 
(c) Early Finish time (EFT) 
(d) Latest Start time (LST) 
 

5.5 _______ is the time that delays a task without changing the total time of the project 
(a) Actual  (b) Slack  (c) Surprlus  (d) Latest time 
 

5.6 One of the tools that is used for resource planning is 
(a) Critical path     (b) Gantt chart  
(c) Star UML       (d) COCOMO 
 

5.7 The activity that is carried out after the delivery of the product to the customer is 
(a) Software maintenance   (b) Software engineering 
(c) Cost estimation    (d) Schedule estimation 
 

 
Answers of Multiple Choice Questions 

5.1 (d), 5.2(a), 5.3(a), 5.4(a), 5.5(b), 5.6(b), 5.7(a) 

 



Software Engineering | 163 

 
 

Short and Long Answer Type Questions  
 
5.1 What is Software Project Management? Explain 
5.2 What are a project manager’s responsibilities in each software development phase? Justify 
5.3 What is software planning? Why is it needed 
5.4 What are the different ways to estimate the Lines of code of a software system 
5.5 What is a function point metric? What are its drawbacks 
5.6  What is software maintenance? What are the different types of maintenance 
5.7 What is software configuration management? Why is it needed 
5.8 Explain how versions are maintained for various software configuration items 
5.9 Describe the process of change management 
5.10 What is release planning? How it helps the project manager in managing the releases 
5.11 A 70,000 LOC system software is to be developed. Assume that the cost of the developer is                   
        Rs.32000/= per month and other overhead cost is Rs. 56000/=, estimate the cost of the project.  
        Also, estimate the time for development. 
5.12 A 35600 LOC application project is available in the market for Rs. 60,000/=. Is it feasible to     
        develop the project or purchase it assuming that the developer cost is Rs. 28,000/= p.m. 
5.13 The given table indicates the task in a project, activities, dependencies, and the time taken for    
        completion of each activity. Draw a activity network and identify the critical path. Generate the  
         Gantt chart. 

Task Name Duration 
(weeks) 

Predecessor 

T1 5 - 
T2 5 - 
T3 3 T1 
T4 5 T2 
T5 4 T3 
T6 3 T3, T4 
T7 9 T2, T5, T6 
T8 13 T7 
T9 18 T8 
T10 11 T9 

 
 
 



164 | Project Management 

 

 
PRACTICAL  
 
5.1 Perform W5HH analysis on the following systems and store the document on any of the project    
       management tools 

(a) Banking System (b) Railway reservation System (c) Online Shopping System 
 
5.2 Identify activities for each of the following systems, then suggest a work breakdown structure,    
      draw network activity diagram, Gantt chart and find the critical path. Create these projects on GI  
       or any other project management tool. 
  (a) Railway reservation System (b) Online Shopping System. 
 
5.3 Consider any mini-project. Maintain the Software Configuration Items on GIT or any other tool.  
       Whenever changes are made to the system, ensure that GIT is updated regularly. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Software Engineering | 165 

 
 

 
KNOW MORE  
 

Project management is a set of guiding principles and approaches to effectively manage the 
software project to deliver quality products within the given timelines and estimated budget. A 
project manager adds value to the organization through effective planning, budgeting, and control 
of activities. Effective monitoring and control are possible if an accurate software plan is 
available.  
 
Once the requirements specification is available and the scope of the system is defined correctly, 
the effort, time for development, cost, and staff required are estimated. Each model or technique 
is only accurate for estimation as the projects have different levels of complexity, and the 
resources required may vary from one project to another. The effort estimation can also be done 
using empirical techniques such as Expert Judgement and Delphi Cost Estimation. Experts 
estimate the project's cost through experience in the expert judgment technique. Sometimes, they 
take the estimation of a similar project as a base, and based on the additional validations, if any, 
the cost is included, and inflation cost is added to get the resultant cost. This technique may suffer 
from personal bias and erroneous estimates. A Delphi cost estimation technique is used to 
overcome the expert judgment approach's drawbacks.  
 
In the Delphi technique, the estimation is carried out by a team of experts and a coordinator. In 
this technique, the coordinator provides all estimators with a copy of the software requirements 
specification and an estimation form. Each member will make individual estimates and submit 
them to the coordinator. The coordinator prepares a summary of feedback on the submitted 
estimate and returns it back to the members to re-estimate. This process is iterated until an 
acceptable estimate arrives and the coordinator prepares the final estimate. 
 
In release planning, each story is divided into tasks, and the effort required by each task is 
estimated. The releases are planned based on the priority of the story. Project planning and release 
planning are essential to manage and control the activities. Each item produced during the 
development phase is a configuration item. These items may require changes. Hence, each 
configuration item requires versioning. The reasons for change are also documented and stored 
in a configuration repository. In order to ensure that the changes are correctly realized, delivered 
on time, and within budget to the customer's satisfaction, configuration auditing is required 
regularly. 
 
 
 
 
 



166 | Project Management 

 

 

REFERENCES AND SUGGESTED READINGS  
 

 Sommerville, I. (2016). Software Engineering. 10th Edition, Pearson Education Limited, 
Boston 
 

 Roger S. Pressman (2010). Software Engineering: A Practitioner's Approach, McGraw-Hill 
 

 Rajib Mall (2018). Fundamentals of Software Engineering, 5th Edition, PHI Learning Private 
Limited. 
 

 Pankaj Jalote (2010). Software Engineering: A Precise Approach, Wiley-India 
 

 Bob  Hughes, Mike Cotterell (2005). Software Project Management, 2nd Edition, The 
McGraw- Hill Companies. 
 

 IEEE Standard for Software Project Management Plans (1058-1998) 
 

 
 
Dynamic QR Code for Further Reading  
 

 
 



Software Engineering | 167 

 

 
REFERENCES FOR FURTHER LEARNING  
 

 Sommerville, I. (2016) Software Engineering. 10th Edition, Pearson Education Limited, 
Boston 

 
 Roger S. Pressman (2010) Software Engineering: A Practitioner's Approach, McGraw-Hill 

 
 Rajib Mall (2018), Fundamentals of Software Engineering, 5th Edition, PHI Learning Private 

Limited. 
 
 Pankaj Jalote (2010), Software Engineering: A Precise Approach, Wiley-India. 

 
 Grady Booch, James Rumbaugh, Ivar Jacobson (2017), The Unified Modeling Language 

User Guide, 2nd Edition, Pearson India Education Services Pvt. Ltd. 
 
 IEEE Recommended Practice for Software Requirements Specifications (830-1993/1998. 

 
 IEEE Recommended Practice for Software Design Descriptions (1016-1998). 

 
 Srinivasan Desikan, Gopalaswamy Ramesh(2011). Software Testing Principles and Practices, 

Pearson-Education 
 
 K.K. Aggarwal, Yogesh Singh(2008). Software Engineering, New Age International 

Publishers. 
 
 IEEE Recommended Practice for Software Design Descriptions (1016-1998). 

 
 Bob  Hughes, Mike Cotterell (2005). Software Project Management, 2nd Edition, The 

McGraw- Hill Companies. 
 
 IEEE Standard for Software Project Management Plans (1058-1998) 

 
 Richard Fairley(2017). Software Engineering Concepts, McGraw Hill Education. 

 
 James Peters, Witold Pedcryz (2007). Software Engineering : An Engineering 

Approach, Wiley. 
 
 IEEE Standard for Configuration Management in Systems and Software 

Engineering (828-2012) 



Software Engineering | 168 

 

 

CO AND PO ATTAINMENT TABLE  

 
Course outcomes (COs) for this course can be mapped with the programme outcomes (POs) after 

the completion of the course and a correlation can be made for the attainment of POs to 
analyze the gap. After proper analysis of the gap in the attainment of POs necessary measures 
can be taken to overcome the gaps. 

Table for CO and PO attainment 

Course 
Outcomes 

Attainment of Programme Outcomes 
(1- Weak Correlation; 2- Medium correlation; 3- Strong Correlation) 
PO-1 PO-2 PO-3 PO-4 PO-5 PO-6 PO-7 

CO-1        
CO-2        
CO-3        
CO-4        
CO-5        

The data filled in the above table can be used for gap analysis. 
 
 
 
 
 
 
 
 



Software Engineering | 169 

 

INDEX 
 

Abstraction,71 
Acceptance Testing,13, 125, 129 
Action Entries,115, 116 
Action Statements,115, 116 
Actor,45,46 
Adaptive Maintenance,13, 154 
Advanced COCOMO,150 
Aggregation,86,87 
Agile,25 
Agile model,26 
Agile Principles,27 
Alpha Testing,13 
Analysis Classes,48 
Annual Change Traffic,155 
Anonymous Object,84 
Architecture,12 
Artifact,6 
Association,86,87 
Auditing,156, 158 
Availability,76 
Basic COCOMO,147 
Bi-directional integration,126,  
Big-bang integration,126, 129 
Blackbox testing,113 
Bottom-up integration,126, 127 
Boundary value analysis,114, 115 
Build,21 
Business Logic,78 
Cause ,116 
Cause Effect Graph,116, 117 
Change control,156, 157 
Change Control Authority,158 
Change Management,14, 130, 143 
Class Diagram,86,91 
Client ,80 
Client-Server Architecture,80 
COCOMO,147 
Code coverage,117 
Code Inspection,99 
Code Review,99 
Code Walk through,99 
Coding Principles,98 
Coding Standards and Guidelines ,98,99 
Cohesion,74,75 

Coincidental Cohesion,74 
Collaboration Diagram,85 
Command Line Interface,82 
Common Coupling,73 
Communicational Cohesion,75 
Comparator,109 
Complexity Adjustment Factor,146 
Component based Software 
Development,17,18 
Composition,86,87 
Computer Sciences,5 
Condition coverage,120, 121, 122 
Conditional Entries,115, 116 
Conditional Statements,115, 116 
Configuration audit,158 
Configuration identification,156 
Construction,24 
Content Coupling,74 
Control Couple,92 
Control Coupling,73 
Control flow graph,122, 123 
Corrective Maintenance,13, 154 
Cost Overrun,7 
COTS,18 
Coupling,73.74 
CRC,48,49,86 
Critical Path,153 
Cyclomatic complexity,122 
Data Abstraction,71 
Data Accessor,79 
Data Couple,92 
Data Coupling,73 
Data Dictionary,55 
Data flow diagram,53,54 
Data Repository,79 
Database Layer,80 
Debugging,12 
Decision elements,122 
Decision Table,115 
Delivered Source code instructions,144 
Dependency,86,87 
Design,12,16 
Design Principles,70 
Development,4 



170 | Index 

 

Documentation,3 
Driver,128 
Earliest Start Time,152 
Early Finish Time,152 
Economical Feasibility,11 
Effect,116 
Efficiency,9 
Effort,148, 150 
Effort Adjustment Factor,148 
Effort Estimation,147 
Elaboration,24 
Embedded,147 
Engineering Change Order,158 
Environment setup,112 
Equivalence class partitioning,114 
Error,108, 109 
Estimation,143 
Ethnography,41 
Evolutionary model,19,20 
Exploratory development,19 
External Entity,54 
External Files,145 
External Inputs,145 
External outputs,145 
Factoring,94,97 
Failure,108, 109 
Fault,108, 109 
Feasibility Study,11 
Filter,81 
Focus of Control,85 
Function coverage,124 
Function point,144, 146 
Functional Abstraction,71 
Functional Cohesion,75 
Functional Requirement,35,43,59 
Functional testing,113 
Gantt chart,153 
Generalization,86,87 
Glassbox testing,117 
Graphical User Interface,82 
Heterogeneity,8 
HTTP,76 
Implementation,12,16 
Inception,24 
Increment,21,26 
Incremental development model,20,21 

Inquiries,145 
Integration testing,125, 126 
Interaction Diagram,84 
Interface Manager,78 
Interface Requirements,59 
Intermediate COCOMO,148 
Internal Files,145 
Interoperability,9 
Interview,39,40,41 
Latest Finish Time,152 
Latest Start Time,152 
Layered Architecture,78 
Layered Design,72 
Levels of testing,125 
Lines of Code ,144 
Link,85 
Logical Cohesion,74 
Maintainability,8,44,76 
Maintenance,4,17 
Maintenance cost,155 
Manual,4 
Middleware ,80 
Minimum Time,152 
Model View Control,77 
Modification Request,155, 158 
Modular Design,72 
Modularity,71,72 
Module,71,72 
Multiplicity,87 
Named Object,84 
Non-Functional Requirement,35,43 
Object,84 
Object Oriented Analysis,45 
Object Oriented modelling,45 
Operation,4 
Operational Feasibility,11 
Operational Guidelines,3 
Organic,147 
Path coverage,122 
People,6, 141 
Perfective Maintenance,13, 154 
Performance,43,76 
Pipe,81 
Pipe and Filter Architecture,81 
Plan-driven model,16,25 
Planning,143 



Software Engineering | 171 

 
 

Portability,9,44 
Procedural Cohesion,74 
Process,6,54, 141 
Process Description,54,55 
Process Engineering,5 
Product,6,7, 141 
Product Backlog,28, 160 
Product Increment,28 
Product Owner,28,29 
Program,3 
Project,6,7, 141 
Prototype,20, 61 
Quality,8 
Quality Assurance,130 
Questionnaire,40.41 
Realization,86,87 
Record View,41 
Release management,159 
Release plan,159 
Reliability,9,44,76 
Repository Architecture,79 
Requirements Elicitation,11,39 
Requirements Engineering,10,16 
Requirements Review,60 
Requirements Specifications,11 
Requirements Validation,11,60 
Retirement,4 
Reusability,9 
Re-use driven development,18 
Risk,23 
Risk management,130, 143 
Safety Critical System,109 
Sandwich integration,126, 128, 129 
Scheduling,143 
SCRUM,28 
SCRUM Master,28 
SCRUM Team,28 
Security,9,44,76 
Security Management,131 
Semi-detached,147 
Sequence Diagram,84,88,89,90 
Sequential Cohesion,75 
Server,80 
Simplicity,27 
Size ,143 

Slack,152 
Software,3 
Software Architecture,75 
Software configuration item ,156 
Software Configuration Management,156 
Software Design,70 
Software Development,9 
Software Development Process,14 
Software Engineering,4 
Software Maintenance,154 
Software Planning,147,  
Software Process,9 
Software Project Management,140 
Software Requirements,41 
Software Requirements Specifications,58 
Software Testing,110 
Source Lines of Code,144 
Spiral model,22,23 
Sprint,29,30, 160 
Sprint Backlog,28 
Staffing,143 
Stamp Coupling,73 
State,84 
Statement coverage,118, 119, 120 
Story,29, 160 
Structured Chart,91,92,94,95,97 
Structured System Analysis,53 
Structured System Design,91 
Stubs,128 
System Architecture,76 
System Requirements,42 
System Support,78 
System Testing,13, 125, 129 
Systems Engineering,5 
Technical Feasibility,11 
Temporal Cohesion,74 
Test case,109111 
Test closure,113 
Test Design,111 
Test Execution,112 
Test First Development,112, 160 
Test Oracle,109110 
Test Planning,111 
Testing,13,17, 130 
Testing tools,136 



172 | Index 

 

Three-Tire Architecture,80 
Throwaway Prototyping,19 
Time Overrun,7 
Timeline,84 
Top-down integration,126, 127 
Transaction Analysis,91,96 
Transaction Centre,96 
Transform Analysis,91,93 
Transition,24 
Trust,8 
Unadjusted Function Point,145 
Unified Modelling Language,25,45,83 
Unified Process ,24 
Unified Process model,23,24 
Unit Testing,13 

Unit testing,125 
Usability,9,44 
Usecase,46 
Usecase Diagram,46,47 
Usecase Specifications,47 
User Interface,78,81 
User Requirements,42 
Validation,110 
Verification,110 
Version control,156, 158 
W5HH,142 
Waterfall model,16,17,20,25 
White box testing,117 
Work Breakdown Structure,151 
XP,28, 160 

  



2 | Index 

 

 


